Burst Ensemble Multiplexing - AllAnswered...Burst Ensemble Multiplexing Linking dendritic activity...

Post on 13-Dec-2020

1 views 0 download

Transcript of Burst Ensemble Multiplexing - AllAnswered...Burst Ensemble Multiplexing Linking dendritic activity...

Burst Ensemble MultiplexingLinking dendritic activity to inhibitory

microcircuits

Richard NaudBrain and Mind Research InstituteDepartment of Cellular and Molecular MedicineUniversity of Ottawa, Canada

Neocortical Neural Code is Hierarchical

Gilbert and Li, Nat Rev Neurosci (2013)Felleman and van Essen, Cereb Cortex (1991) Hubel and Wiesel, J Physiol (1962)

Synaptic inputs

or sensory

stimulation

FiringRate

Rate 1Inputs 1

Inputs 2 Rate 2

Outline

Introducing Bursting and the Neural CodePart I: Burst Ensemble MultiplexingPart II: Information-Limiting Factors in MultiplexingPart III: Role of Inhibitory MicrocircuitryHierarchical Codes: A Role for Multiplexing?

Burst Ensemble Multiplexing

PART I

Ensemble Firing Rate

Input (sensory)

time

Ensemble Neural Decoding

Firing Rate

Gerstner Neural Comp (2000)

Tchumatchenko et al., J Neurosci (2011)

Knight J Gen Physiol (1972)Wilson and Cowan Biophys J (1972)

Membrane Potential

time

London et al., Nature (2010)Banerjee et al., Neural Comput. (2010)

Input-derivative encoding Gabbiani et al. Nature (1996)Kepecs et al. (2001)

Larkum et al. Nature (1999)Xu et al. Nat. Neurosci. (2013)Conjunction of inputs

Burst Ensemble Multiplexing

1 Burst

Firing times

Events}

Firing Rate

Burst Rate

Event Rate

Singlet Rate

1 Singlet

Distinct Nature of Inputs to Apical VS Perisomatic

SomaticSensory - Bottom-up

Gilbert and Sigman Neuron (2007)Petreanu et al. Nature (2009)

Larkum Trends Neurosci (2013)Xu et al. Nature (2012)

Deep-layer (L5B)pyramidal cells

Top-down (Attention,

expectation, top-down partial credit)

Dendritic

Cortical Microcircuits

Gilbert and Li, Nat Rev Neurosci (2013)

+ STD

PV+

VIP

+STD

STD+

STF+-

SOM+-

-

-Pyr

Tsodyks and Markram PNAS (1998)

Pala and Petersen, Neuron (2015)Jiang et al. Science (2016)

Reyes et al. Nat Neurosci (1998) Pfeffer et al. Nat Neurosci (2013)Pi et al. Nature (2013)

Lovett-Baron Nat Neurosci (2012)Pi et al. Nature (2013)

Bursts of Action Potentials in vivo

Bursts are sparseBursts are shortBursts are stereotypical

In vivo ISI distributions are bimodal: Bursts and single spikesP (ISI)

Interspike interval (schematic)

de Kock et al. J Phys (2008)

Bursting in L5B cells: BAC-Firing

Deep-layer (L5B)pyramidal cell

population

20 ms

10 ms

Larkum et al. Nature (1999)

Naud, Bathellier and Gerstner, Front Comp Neuro (2014)

Characterization of Active Dendrites

Two-compartment model fitted on electrophysiological data- Predicts 85% of spike times- Morris-Lecar dendritic compartment and LIF soma (+

adaptation)- Back-propagating action potential and Forward propagating

calcium spike

Experiment Model

Mensi, et al. J Neurophys (2012)

Background noise

Each compartment receives background noiseAmplitude of noise tuned to yield 5 mV standard deviation (Polack et al. Nat Neurosci 2013)Background noise replaces E-I balance and synaptic bombardment

background noise

background noise

Each compartment receives independent noise Simulate ensemble

Naud & Sprekeler, Submitted

Simulations of Deep Cortical Cells show Burst Ensemble Multiplexing

Deep-layerpyramidal cell

population

Simulations of Deep Cortical Cells show Burst Ensemble Multiplexing

Naud & Sprekeler, Submitted

S Dx

S

DS

Sx

DecodingEncoding

A single ensemble of pyramidal neurons can encode two streams of information simultaneously with different spike

timing patterns

Information Limiting Factors in Multiplexing

PART II

Encoding Time-dependent Stimuli

Multiplexing holds for quickly changing inputs up to approximately 40 Hz.

Mutual Information of Firing Rate vs Multiplexing

Shannon (1948)Bialek et al. (1991)

Lindner IEEE (2016)

~420+210 = 630 bits/s~300 + 40 = 340 bits/s

Multiplexing info.Firing Rate info.

I(A; B) = �Z W

0log2(1� C(!))d!

Burst Ensemble Multiplexing can almost double information rate

Burst Ensemble Multiplexing is works with larger ensembles

Information-Limiting Factors

Bandwidth

Number of cells

E0

F0

N

Stationary event rateStationary Burst ProbabilityNumber of neurons in the ensembleEffective membrane potential input-driven varianceBandwidth

Ps Pd

Theoretical Estimates of Information Rate

E0

F0

N

Stationary event rateStationary Burst ProbabilityNumber of neurons in the ensembleEffective membrane potential input-driven varianceBandwidth

Ps Pd

Renewal Theory and Information Theory

Theoretical limits to multiplexing

0 20 40 60 80 100Avg. Burst Prob. [%]

1.0

1.5

2.0To

tal I

nfo.

[bits

/ms] 2 sp./bst.

3 sp./bst.6 sp./bst.eq. rate

0 5 10 15Burst Size [sp./bst]

0.0

0.5

1.0

1.5

Info

. [bi

ts/m

s]

N =104ca

0 5 10 15Burst Size [sp/bst.]

0

10

20

30

40

Opt

imal

Bur

st P

rob.

[%]b d

100

Pop. Size [# cells]

0.5

1.0

1.5

2.0In

fo. B

EM /

Info

. Eq.

Rat

e

102 104 106

Rate advantageBEM advantage

N = 103

N = 102

Sparse and short bursts are optimal

Compare Total Multiplexing Information with Classical firing rate info, constrained for matched total number of spikes

Naud & Sprekeler, Submitted

Can Neurons Read a Multiplexed Code?

PART III

Neural Demixing: Short-Term Plasticity and Cortical Microcircuits

STD

STF

Short-term Facilitation

Short-termDepressionEvents}

Pre-syn. Spike pattern

Post-syn. Membrane potential

+ STD

PV+

VIP

+STD

STD+

1 Burst

1 Singlet

STF+-

SOM+-

-

-

Simulations of Neocortical Networks show Demultiplexing

Naud & Sprekeler, Submitted

Time [ms]

S Dx

S

DS

Sx

Simulations of Neocortical Networks show Demultiplexing

+ STD

STF+-

Naud & Sprekeler, Submitted

Theoretical limits to multiplexing

0 20 40 60 80 100Avg. Burst Prob. [%]

1.0

1.5

2.0To

tal I

nfo.

[bits

/ms] 2 sp./bst.

3 sp./bst.6 sp./bst.eq. rate

0 5 10 15Burst Size [sp./bst]

0.0

0.5

1.0

1.5

Info

. [bi

ts/m

s]

N =104ca

0 5 10 15Burst Size [sp/bst.]

0

10

20

30

40

Opt

imal

Bur

st P

rob.

[%]b d

100

Pop. Size [# cells]

0.5

1.0

1.5

2.0In

fo. B

EM /

Info

. Eq.

Rat

e

102 104 106

Rate advantageBEM advantage

N = 103

N = 102

Sparse and short bursts are optimal

Compare Total Multiplexing Information with Classical firing rate info, constrained for matched total number of spikes

Naud & Sprekeler, Submitted

Martinotti Inhibition can Optimize Multiplexing

STF

_

_

STD+

STF+

_

_

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

] *

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

]

*

+

0 300 600 9000

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 900Som. Input [pA]

0

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 9000

20

40

60

80

100

Burs

t Pro

b. [%

]

0 300 600 900

Dend. Input [pA]

0

20

40

60

80

100

Burs

t Pro

b. [%

]

a b c d

e f g h

STF

_

_

STD+

STF+

_

_

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

] *

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

]*

+

0 300 600 9000

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 900Som. Input [pA]

0

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 9000

20

40

60

80

100

Burs

t Pro

b. [%

]

0 300 600 900

Dend. Input [pA]

0

20

40

60

80

100

Burs

t Pro

b. [%

]

a b c d

e f g h

STF

_

_

STD+

STF+

_

_

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

] *

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

]

*

+

0 300 600 9000

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 900Som. Input [pA]

0

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 9000

20

40

60

80

100

Burs

t Pro

b. [%

]0 300 600 900

Dend. Input [pA]

0

20

40

60

80

100

Burs

t Pro

b. [%

]

a b c d

e f g h

STF

_

_

STD+

STF+

_

_

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

] *

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

]

*

+

0 300 600 9000

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 900Som. Input [pA]

0

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 9000

20

40

60

80

100

Burs

t Pro

b. [%

]

0 300 600 900

Dend. Input [pA]

0

20

40

60

80

100

Burs

t Pro

b. [%

]

a b c d

e f g h

STF

_

_

STD+

STF+

_

_

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

] *

-FDI

+FDI

1

2

3

Avg.

Bur

st S

ize

[sp.

]

*

+

0 300 600 9000

20

40

60

80

Firin

g Ra

te [H

z]

0 2000

10

0 300 600 900Som. Input [pA]

0

20

40

60

80Fi

ring

Rate

[Hz]

0 2000

10

0 300 600 9000

20

40

60

80

100

Burs

t Pro

b. [%

]

0 300 600 900

Dend. Input [pA]

0

20

40

60

80

100

Burs

t Pro

b. [%

]

a b c d

e f g h

1) Feedback dendritic inhibition imposes short and sparse bursts, 2) Multiplexing is preserved when inhibition follows the STF + divisive inhibition motif

som. input at 0,200, 400 pA

som. input at 0 pA

som. input at 400 pA

Summary

- Properties of active dendrites is consistent with a mechanism for encoding two streams of information simultaneously

- Burst Ensemble Multiplexing is a distinct for time-division multiplexing and frequency division multiplexing

- Short and sparse bursts are optimal for multiplexing

- Decoding of two streams of information is consistent with physiology of inhibitory microcircuits in the cortex

Bottom-up input

Top Down Input

Bottom-up input

Top Down Input

+STD

STF+

-

STD

-

+

-

+

+

+

++

STD

STF

STF

Top-Down Dendritic Input

Bottom-up Somatic Input

Burst Probability in Low-Level Ensemble

Event Ratein Higher-Level Ensemble

STF and Divisive Inhibitionin Descending Connections

STD inAscendingConnections

STD+

+

+

+

STD

STF

STF

Top-Down Dendritic Input

Bottom-up Somatic Input

Burst Probability of Low-Level Ensemble

Event Rateof Higher-level Ensemble

STF in DescendingConnections

STD in AscendingConnections

Two-way Vertical Communication Layer-wise Top-down Multiplication

Acknowledgments

Henning Sprekeler

Matthew Larkum

Technische Universität BerlinBernstein Center for Computational Neuroscience

Albert Gidon

University of Ottawa Centre for Neural Dynamics

Len Maler

Jean-Claude BéïqueSimon Chen

Humboldt Universität

Filip Vercruysse

Neural Coding LabLouis Vallée Zeke Williams An Duong

We have open Ph.D. and PostDoc positions!

Funding

0 20 40 60 80 100Avg. Burst Prob. [%]

1.0

1.5

2.0To

tal I

nfo.

[bits

/ms] 2 sp./bst.

3 sp./bst.6 sp./bst.eq. rate

0 5 10 15Burst Size [sp./bst]

0.0

0.5

1.0

1.5

Info

. [bi

ts/m

s]

N =104ca

0 5 10 15Burst Size [sp/bst.]

0

10

20

30

40

Opt

imal

Bur

st P

rob.

[%]b d

100

Pop. Size [# cells]

0.5

1.0

1.5

2.0

Info

. BEM

/ In

fo. E

q. R

ate

102 104 106

Rate advantageBEM advantage

N = 103

N = 102

Hypothesis: Burst for Multiplexing

Brain Rhythms and Bursting

Figure 1: Power Spectral Density for TPN population simulated under varying constant

dendritic input and 200pA constant somatic input. (A) Power spectral density for TPN popu-lation with Id = 500pA (red) and Id = -500pA (blue). (B) Neural response (top, raster) and somaticmembrane potential (bottom) to constant 500pA dendritic input. �v = 9.68mV, mean firing of 18 Hzand Fano Factor of 0.52 calculated after 5 repetitions. (C) Normalized peak power of frequencies in the↵/� regime vs. constant dendritic current of power Id. (D) Normalized peak power of frequencies in the↵/� regime vs. average Burst fraction.

1

Figure 1: Power Spectral Density for TPN population simulated under varying constant

dendritic input and 200pA constant somatic input. (A) Power spectral density for TPN popu-lation with Id = 500pA (red) and Id = -500pA (blue). (B) Neural response (top, raster) and somaticmembrane potential (bottom) to constant 500pA dendritic input. �v = 9.68mV, mean firing of 18 Hzand Fano Factor of 0.52 calculated after 5 repetitions. (C) Normalized peak power of frequencies in the↵/� regime vs. constant dendritic current of power Id. (D) Normalized peak power of frequencies in the↵/� regime vs. average Burst fraction.

1

Bursting imposes a strong correlation structure, even in the asynchronous state

Figure 1: Power Spectral Density for TPN population simulated under varying constant

dendritic input and 200pA constant somatic input. (A) Power spectral density for TPN popu-lation with Id = 500pA (red) and Id = -500pA (blue). (B) Neural response (top, raster) and somaticmembrane potential (bottom) to constant 500pA dendritic input. �v = 9.68mV, mean firing of 18 Hzand Fano Factor of 0.52 calculated after 5 repetitions. (C) Normalized peak power of frequencies in the↵/� regime vs. constant dendritic current of power Id. (D) Normalized peak power of frequencies in the↵/� regime vs. average Burst fraction.

1

Louis ValléeuOttawa

Burst Ensemble Multiplexing

Cortical Microcircuits

Tsodyks and Markram PNAS (1998)

Pala and Petersen, Neuron (2015)Jiang et al. Science (2016)

+ STD

PV+

VIP

+STD

STD+

STF+-

SOM+-

-

-

Reyes et al. Nat Neurosci (1998) Pfeffer et al. Nat Neurosci (2013)Pi et al. Nature (2013)

Lovett-Baron Nat Neurosci (2012)Pi et al. Nature (2013)

Short-Term Facilitation

(STF)

Short-Term Depression

(STD)

Pyr

Pyr -> SOM+

Pyr -> PV+

Naud, Bathellier and Gerstner, Front Comp Neuro (2014)

Two-compartment model reproduces BAC-firing

Model reproduces - Spike Timing - BAC-Firing - Critical Frequency

Rate Coding

Source: backyardbrains.com

Conditions for Information Enhancement