An Introduction to CLIMEX - WordPress.com · 2017. 8. 31. · DPD > 0 is equivalent to obligate...

Post on 24-Aug-2020

1 views 0 download

Transcript of An Introduction to CLIMEX - WordPress.com · 2017. 8. 31. · DPD > 0 is equivalent to obligate...

© CSIRO

Presenter:Darren Kriticos

An Introduction to CLIMEX

Bob Sutherst, Gunter MaywaldDarren Kriticos and Tania Yonow

Personal Use Only - Not for Further Distribution

© CSIRO

SELAMAT DATANGKuala Lumpur

Personal Use Only - Not for Further Distribution

© CSIRO

Housekeeping

• Exits• Fire assembly point• Mobile Telephones (silent please)• Dinner ??

– Attendees– Venue

• Daily Programme

© CSIRO

Daily Programme

• 8:30 – 10.00 Morning Session 1• 10:00 – 10:30 Morning Coffee/Tea• 10:30 – 12:30 Morning Session 2• 12:30 – 1:15 pm Lunch• 1:15 – 3:00 Afternoon session 1• 3:00 – 3:30 Coffee/Tea• 3:30 – 5:00 Afternoon Session 2

© CSIRO

Outcomes of Training

• Appreciation of the conceptual basis of CLIMEX

• Provision of a context for plot studies

• Inference of species’ climatic requirements from their distributions 

• Inference of geographical and seasonal climatic suitability, length of growing season, number of generations pa, nature of limiting effects

• Skills in operating CLIMEX software

© CSIRO

CLIMEX Course Programme• Overview Friday

• Match Climates         Friday

• The CLIMEX Model     Friday

–Compare Locations    Friday

–Compare Years Saturday

– Species Fitting  Saturday

• MetManager Saturday

• MapManager       Saturday

• Own Species Fitting         Sunday

© CSIRO

Approaches to Climate‐Matching

• Pattern‐matching of meteorological and/‐environmental Data

• (Eg.  BIOCLIM, DOMAIN, CLIMATE, Floramap, GAMs, GARP, GRASP, HABITAT, Logistic Regression / Discriminant Functions)

• See Kriticos, D. J. & Randall, R. P. (2001). A comparison of systems to analyse potential weed distributions.  In: Groves, R.H., Panetta, F.D., and Virtue, J.G., Eds. Weed Risk Assessment. Melbourne, Australia: CSIRO Publishing pp. 61‐79.

• Process‐oriented modelling • CLIMEX, NAPPFAST

© CSIRO

Matching Months

Log Regression

Matching Extremes

BIOCLIM

Personal Use Only - Not for Further Distribution

© CSIRO

Log RegressionCLIMEX

Comparison of ResultsCLIMEX & Logistic Regression

Sutherst, R. W. & Bourne, A. S. (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biological Invasions, 11, 1231-1237. Personal Use Only - Not for Further Distribution

© CSIRO

Toolbox

Match Climates CLIMEX Model

MetManager

MapManager

Compare

Locations

Compare

YearsPersonal Use Only - Not for Further Distribution

© CSIRO

Introduction to CLIMEX

Exercise 1Becoming familiar with CLIMEX

Flythrough the package

Personal Use Only - Not for Further Distribution

© CSIRO

Starting CLIMEX

CLIMEX“applications”

.GMD

Personal Use Only - Not for Further Distribution

© CSIRO

Stored settings for the currently selected model

.DXS

CLIMEX“applications”

.GMD

Personal Use Only - Not for Further Distribution

© CSIRO

Stored settings for the currently selected model

.DXS

CLIMEX“applications”

.GMD

Personal Use Only - Not for Further Distribution

© CSIRO

Simulation File (*.dxs)

• Model name

• Parameter sets in use

• Model and module settings

(Preferences dialog)

• Formats for tables, maps and graphs

• SequencesText file – you can edit in Notepad,but best to let CLIMEX update it

Personal Use Only - Not for Further Distribution

© CSIRO

Match Climates‘poor person’s climate‐matching’

Personal Use Only - Not for Further Distribution

© CSIRO

Match Climates

Personal Use Only - Not for Further Distribution

© CSIRO

Introduction to Match Climates

• ‘Home’ and ‘Away’• Weighting• Masking (Match Period)• Scenarios

© CSIRO

Away LocationsHome Location

Match Climates

Personal Use Only - Not for Further Distribution

© CSIRO

Away LocationsHome Region

Match Climates (Regional)

Personal Use Only - Not for Further Distribution

© CSIRO

Match Climates Screen

Personal Use Only - Not for Further Distribution

© CSIRO

Tutorial 1Comparing Climates

Personal Use Only - Not for Further Distribution

© CSIRO

Match with the World

• No weighting or masking; weight and mask• Brisbane  (Sub‐Tropics)• Amsterdam (Temperate)• Athens (Mediterranean)• Beijing (Continental Temperate)• Singapore (Tropical)• Cairo (Arid Zone)• Your Home Towns

© CSIRO

Cool / Wet

Hot / Dry

AB

C

The Direction of Climate Differences Matters

Personal Use Only - Not for Further Distribution

© CSIRO

At the Edge of the Range

Nairobi is marginal for R. appendiculatus

Match Nairobi with Kenya (use Africa)Compare Tmax for Kibos (0.68), Muguga (0.76)

Personal Use Only - Not for Further Distribution

© CSIRO

At the Edge of the Range

Kibos is more favourable for R. appendiculatusMuguga is less favourable

Nairobi is marginal for R. appendiculatus

Match Nairobi with Kenya (use Africa)Compare Tmax for Kibos (0.68), Muguga (0.76)

© CSIRO

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

0

5

10

15

20

25

30

35

Tem

pera

ture

-5

-10

New Orleans

Mount Tamborine

Averages Don’t Tell the Whole Story

Personal Use Only - Not for Further Distribution

© CSIRO

Brisbane (Australia) Match With Thomasville (USA)

Personal Use Only - Not for Further Distribution

© CSIRO

Is Winter Too Coldor

Not Warm Enough?

Exercise:  Match Tmin & Tmax

Personal Use Only - Not for Further Distribution

© CSIRO

How Cold Are You, Then?

0

5

10

15

20

25

30

35Av

erage Tempe

ratures (oC)

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Mount Tamborine

Ipswich

Personal Use Only - Not for Further Distribution

© CSIRO

Using Nature’s Water Storage

Flow of Water

Water

Evapotranspiration

Personal Use Only - Not for Further Distribution

© CSIRO

Exercise:  Match Soil Moisture

Personal Use Only - Not for Further Distribution

© CSIRO

Masking ExerciseMatch Temperate & Tropical

Match Nairobi with European locations in summer.

Nairobi with Equatorial zone set to 10, including April 30 ‐ September 2.

Map CMI for Europe to see the similarity between Nairobi and European summer

Personal Use Only - Not for Further Distribution

© CSIRO

Applications

Biological Control

Exercise:  Discussion

Personal Use Only - Not for Further Distribution

© CSIRO

Useful References• Csurhes, S. M. & Kriticos, D. J. (1994) Gleditsia triacanthos L. 

(Caesalpiniaceae), another thorny, exotic fodder tree gone wild. Plant Protection Quarterly, 9, 101‐105.

• Dhileepan, K., Senaratne, K. A. D. W. & Raghu, S. (2006) A systematic approach to biological control agent exploration and prioritisation for prickly acacia (Acacia nilotica ssp. indica). Australian Journal of Entomology, 45, 303‐307.

• Robertson, M. P., Kriticos, D. J. & Zachariades, C. (2008) Climate matching techniques to narrow the search for biological control agents. Biological Control, 46, 442‐452.

• Kriticos, D. J. (2012) Regional climate‐matching to estimate current and future biosecurity threats. Biological Invasions.

© CSIRO

CLIMEX MODELCompare Locations

Personal Use Only - Not for Further Distribution

© CSIRO

Point Distribution Data

• Assumption that if a species has been recorded at a location, the climate is suitable

• GBIF, MOBOT, etc.• Varying precision, meaning, time of capture

© CSIRO

• Doing the possible

• ‘Data’ availability

• ‘Intelligent’ results cf. Match Climates

CLIMEX ‐ Being Pragmatic ‘Garbage’ In‐‘Pure Wisdom’ Out

Personal Use Only - Not for Further Distribution

© CSIROPersonal Use Only - Not for Further Distribution

© CSIRO

‘Where’ is as important as ‘When’

Living at the margin is more exciting but dangerous

Personal Use Only - Not for Further Distribution

© CSIRO

Compare Locations Screen

© CSIRO

Cane Toad

Tiger Snake

Tutorial 2Getting started on CLIMEX modelling

Personal Use Only - Not for Further Distribution

© CSIRO

CLIMEX: Axe or scalpel?

View from an aeroplane

Personal Use Only - Not for Further Distribution

© CSIRO

Back‐to‐Front

Reductionist Modelling

HCDW

Inferential Modelling

Personal Use Only - Not for Further Distribution

© CSIRO

Taking the Bad With the Good 

Time of  Year

Relative change in

 pop

ulation grow

th Growth Season Survival Season

1.0

-1.0

0

Personal Use Only - Not for Further Distribution

© CSIRO

• Statistical description versustransparent mechanisms

• Hypothesis for species

What’s In a Model?

Personal Use Only - Not for Further Distribution

© CSIRO

Some CLIMEX Theory…

© CSIRO

EI = GIA x  SI x  SX,

where GIA is the Annual Growth Index,

SI is the combined Annual Stress, and

SX  is the product of interaction terms involving each stress.

Eco‐climatic Index

Personal Use Only - Not for Further Distribution

© CSIRO

Annual GIAGIA = 100(GIW)/52,

where GIW is the Weekly Growth Index,scaled between 0‐1, and

GIA is the Annual Growth Indexscaled between 0‐100.

52

i=1

Growth Index

© CSIRO

Weekly Growth Index

GIw = Instantaneous intrinsic rate of natural increase ‘r’ in relation to climate

Grow or Perish

Personal Use Only - Not for Further Distribution

© CSIRO

Living in Week‐tight CompartmentsWeekly Snapshots of ‘r’

Week 1, n

GI N

Personal Use Only - Not for Further Distribution

© CSIRO

Weekly GIWGIW = TI x MI (x DI x LI x RI x SV x BI) 

where TI is the weekly Temperature IndexMI is the weekly Moisture IndexDI is the weekly Diapause IndexLI is the weekly Light IndexRI is the weekly Radiation IndexSV is the weekly Substrate IndexBI is the weekly Biotic Index

Growth Index

Personal Use Only - Not for Further Distribution

© CSIRO

Medfly:  USA,  Oklahoma  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

‐10

0

10

20

30

40

Tempe

rature o C

0

25

50

75Rainfall (m

m)

0

0.2

0.4

0.6

0.8

1

Index

MI

GITI

Personal Use Only - Not for Further Distribution

© CSIRO

Exercise

Run Compare Locations in Australia forRussian wheat aphid (Diuraphis noxia)

Look at detailed Growth Charts at a few locations

Note the relationship between:Temperature IndexMoisture IndexGrowth Index

© CSIRO

CLIMEX Parameter Values

Personal Use Only - Not for Further Distribution

© CSIRO

DV0 DV1 DV2 DV3

Tempe

rature In

dex

However…

Temperature Index

Temperature

© CSIRO

Temperature Index (Iq)

A = accumulated degree‐days above DV0 assuming a constant temperature of DV1Q = area under the temperature curve above DV0

Iq = Q/A,     if Q  A, then Iq = 1

© CSIRO

Temperature Index (Ih)

DV2 DV3

1

Ih

Maximum Temperature

© CSIRO

Weekly Temperature Index

Annual Temperature Index52

i=1TIA = 100(TIW)/52

Temperature Index

DV2 DV3

1

Ih

Maximum Temperature

X

TIW = Iq x Ih

© CSIRO

Flow of Water

Water

Evapotranspiration

Moisture

Personal Use Only - Not for Further Distribution

© CSIRO

SM0 SM1 SM2 SM3

Moisture Index

Moisture Index

Soil Moisture

© CSIRO

Medfly – Western Oklahoma

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Soil

Moi

stur

e / M

oist

ure

Inde

x

Soil MoistureMedfly Moisture Index

J F M A M J J A S O N D

Soil Moisture vs Moisture Index

Personal Use Only - Not for Further Distribution

© CSIRO

LT1 LT0

Ligh

t Ind

ex

Light Index

Daylength

1

© CSIRO

Diapause Parameters

• DPD0 Entry Daylength• DPT0 Entry Temperature• DPT1 Exit Temperature• DPD Min. days in diapause• DPSW Winter/Summer switch

© CSIRO

Diapause

InDiapause

(no stress accumulation)

DPD0DPT0

DPT1(DPD)

DPSW0 1

DiapauseInduction

DPSW0 1

DiapauseTermination

at least DPD days

© CSIRO

DPD > 0 is equivalent to obligate diapause

EI is set to 0 if induction conditions not met

Diapause

InDiapause

(no stress accumulation)

DPD0DPT0

DPT1(DPD)

DPSW0 1

DiapauseInduction

DPSW0 1

DiapauseTermination

at least DPD days

© CSIRO

SV0 SV1 SV2 SV3

Substrate Index

Substrate Variable

Substrate Index(Physical or Biotic)

Personal Use Only - Not for Further Distribution

© CSIRO

Biotic Index

• Competition  (SIP0 < 0)• Synergy  (SIP0 > 0)

Allows modelling of interacting species

Personal Use Only - Not for Further Distribution

© CSIRO

BIW(1) = 1 + SIP01 X TGIW(2)

BIW(2) = 1 + SIP02 X TGIW(1)

• Competition  (SIP0 < 0)• Synergy  (SIP0 > 0)

Biotic Index

Allows modelling of interacting species

Personal Use Only - Not for Further Distribution

© CSIRO

EI = GIA x  SI x  SX

where  GIA is the Annual Growth Index

SI is the combined Annual Stress

SX is the product of interaction terms       involving each stress

Eco‐climatic Index

Personal Use Only - Not for Further Distribution

© CSIRO

Stresses

Personal Use Only - Not for Further Distribution

© CSIRO

What Happens at the Edge of the Range?

N

DRY WET

Moisture GradientLow High

Personal Use Only - Not for Further Distribution

© CSIRO

SI = (1‐CS/100)(1‐DS/100)(1‐HS/100)(1‐WS/100),

where SI is the Annual Stress Index, scaled between 0‐1, and CS, DS, HS and WS are Cold, Dry, Hot and Wet stress respectively.

Stress InteractionsSX is the product of interaction terms involving a temperature and a moisture stress, i.e.  CDX, CWX, HDX and HWX are the annual cold–dry, cold–wet, hot–dry and hot–wet stress interaction indices.

Stresses

Personal Use Only - Not for Further Distribution

© CSIRO

Accumulating Stress[Mild + Slow] or [Severe + Fast]

Temperature oC

Stre

ss R

ate

0 15

Personal Use Only - Not for Further Distribution

© CSIRO

Time

Accu

mul

ated

Stre

ss

100

0

Accumulating Stress[Mild + Slow] or [Severe + Fast]

Personal Use Only - Not for Further Distribution

© CSIRO

00.20.40.60.8

11.21.41.6

0 2 4 6Week

Stre

ssTotal Accumulated StressWeekly Stress

Personal Use Only - Not for Further Distribution

© CSIRO

How Cold Are You, Then?

0

5

10

15

20

25

30

35M

onth

ly A

vera

ge T

empe

ratu

re (o

C)

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Mount Tamborine

Ipswich

14 percentiles

Personal Use Only - Not for Further Distribution

© CSIRO

Exercise

Run Compare Locations in Australia forRussian wheat aphid (Diuraphis noxia)

Look at detailed Growth Charts at a few locations

Note the relationship between:Eco‐climatic IndexGrowth IndexStress Indices

© CSIRO

Tutorial 3Climate Change and Irrigation

Scenarios

Personal Use Only - Not for Further Distribution

© CSIRO

Days 3 and 4• The MetManager• The MapManager• Review of CLIMEX functions• Some notes on parameters• Parameter Fitting• Compare Years• Using the Grid Database• What would you like to know?

• Fitting your own species

© CSIRO

The MetManager

© CSIRO

The MapManager

© CSIRO

CLIMEX Explained

© CSIRO

Temperature Index

DV2 DV3

1

Ih

Maximum Temperature

X

DV0 DV1 DV2 DV3

Tempe

rature In

dex

© CSIRO

SM0 SM1 SM2 SM3

Moi

stur

e In

dex

Moisture Index

Soil Moisture

© CSIRO

LT1 LT0

Ligh

t Ind

ex

Light Index

Daylength

1

© CSIRO

Cold StressToo cold (minimum temperatures)

TTCSTHCS

Not warm enough (degree‐days)

DTCS   (above DVCS)DHCS

Too cold (average temperatures)

TTCSATHCSA

© CSIRO

TTCS

THCS

Cold Stress (1)

Minimum Temperature

© CSIRO

DTCS

DHCS

Cold Stress (2)

Day-degrees above DVCS

© CSIRO

TTCSA

THCSA

Cold Stress (3)

Average Temperature

© CSIRO

Heat Stress

Too hot (maximum temperatures)

TTHSTHHS

Not cool enough (degree‐days)

DTHS   (above DV3)DHHS

© CSIRO

TTHS

THHS

Heat Stress (1)

Maximum Temperature

© CSIRO

DTHS

DHHS

Degree-days above DV3

Heat Stress (2)

© CSIRO

SMDS

HDS

Dry Stress

Soil Moisture

© CSIRO

SMWS

HWS

Wet Stress

Soil Moisture

© CSIRO

Stress vs Growth Thresholds

Soil Moisture/Temperature

© CSIRO

Cold‐Wet Stress

•DTCW 

•MTCW

•PCW   

Stress accumulates only when this number of degree‐days above DV0 is accumulated per week.

Stress accumulates only when this level of soil moisture is exceeded

Rate of stress accumulation

© CSIRO

Hot‐Wet Stress

•TTHW 

•MTHW

•PHW   

Stress accumulates only when the weekly maximum temperature exceeds this parameter.

Stress accumulates only when this level of soil moisture is exceeded

Rate of stress accumulation

© CSIRO

Cold‐Dry Stress

•DTCD 

•MTCD

•PCD   

Stress accumulates only when this number of degree‐days above DV0 is not achieved in any week.

Stress accumulates only when this level of soil moisture is not reached

Rate of stress accumulation

© CSIRO

Hot‐Dry Stress

•TTHD 

•MTHD

•PHD   

Stress accumulates only when the weekly maximum temperature exceeds this parameter.

Stress accumulates only when this level of soil moisture is not reached.

Rate of stress accumulation

© CSIRO

Hot‐Dry Stress

Weekly Stress Rate =

(Tmax – TTHD) x (MTHD – SM) x PHD

while Tmax > TTHD and SM < MTHD

© CSIRO

Tutorial 4Stress Indices

Scenarios

Personal Use Only - Not for Further Distribution

© CSIRO

Generation Time Parameter

PDD

Minimum day‐degrees above DV0 needed to complete a generation

© CSIRO

PDD Example

• Prickly Acacia (Acacia nilotica)• Run Acnil, set PDD to 0 temporarily

– Note EI pattern– explain the deficiencies

• Add PDD back in and run– Note difference– Note how positive GI exceeds range of EI– Note high EI at range boundary

• Run climate change scenario

© CSIRO

• Pest Risk Analysis

• Quarantine (Tutorials 6, 7)

• Biological Control (Tutorial 5)

CLIMEX Applications

Personal Use Only - Not for Further Distribution

© CSIRO

How do we judge the quality of a CLIMEX model?

© CSIRO

How do we judge the quality of a CLIMEX model?

• Agrees with all qualified location data– EI >= 1

• Parameters are biologically reasonable• No excessive climate suitability

• AUC/ROC is INAPPROPRIATE– Measures aspects of the model that are irrelevant to invasive species, and most other modelling questions

– Says as much or more about sampling biases as it does about model behaviour

© CSIRO

How do we decide when to stop modelling?

© CSIRO

How do we decide when to stop modelling?

• When we can’t improve one aspect of the model, without sacrificing another

• When our research question has been answered

• When we have a publishable model– Defendable– Useful

© CSIRO

• Effective data‐base ‐ close to infinity

50 Locs x 6+ Factors x 52 Weeks = 15,000

• Parameter range – wide domain

• Visual fitting – concealed rigour

Seeing Is Believing

Personal Use Only - Not for Further Distribution

© CSIRO

-100

400

300

200

100

00

Darwin

Launceston

Rockhampton

Coober Pedy

Canberra

Temperature Ranges (0C)  Australia

Personal Use Only - Not for Further Distribution

© CSIRO

0

400

300

200100

DarwinLauncestonRockhampton

Coober PedyCanberra

Rainfall Ranges (mm) Australia

Personal Use Only - Not for Further Distribution

© CSIRO

• Distributions are dynamic

• What quality is your data on species’ distributions?

• How complete was the sampling?

Data Quality

Personal Use Only - Not for Further Distribution

© CSIRO

Key Assumptions

• Climate is the only factor limiting the distribution

• Species interactions & other barriers are detectable as internal inconsistencies if significant

Personal Use Only - Not for Further Distribution

© CSIRO

Species Parameters

• Accessible from Parameter Grid Window or Parameter Tree Window

• Parameter Grid more suitable for CLIMEX

• Don’t forget Parameter Comments

• Parameter limits pre‐set by CLIMEX

• There is inter‐dependence between parameters

© CSIRO

• What do you sense?

• How do you feel?

Your Personal Comfort Index

Species Parameter Fitting

Personal Use Only - Not for Further Distribution

© CSIRO

Species Parameter Fitting

ExerciseCodling Moth Distribution

Personal Use Only - Not for Further Distribution

© CSIRO

Codling Moth ‐ Distribution

© CSIRO

Codling Moth ‐ Parameter Fitting

• Create convenient Location Selection that includes the required meteorological data

• Create a map region that covers the area considered

• Select a starting template parameter set

Some preparation

© CSIRO

Codling Moth ‐ Parameter Fitting

Examine the known distribution

• Survives in the cold weather of northern Europe• Survives in the warmer, dry Mediterranean region• Absent from wet, tropical regions of Africa

© CSIRO

Codling Moth ‐ Parameter Fitting

Examine the known distribution

• Survives in the cold weather of northern Europe• Survives in the warmer, dry Mediterranean region• Absent from wet, tropical regions of Africa

Choose Temperate Template to start, but set DTCS to 25oC

© CSIRO

Codling Moth Map 1 

Personal Use Only - Not for Further Distribution

© CSIRO

Codling Moth Parameter Fitting 

© CSIRO

Codling Moth Parameter Fitting 

Examine locationsCold Stress ?Heat Stress ?Dry Stress ?

© CSIRO

Codling Moth Parameter Fitting 

Western Asia is indicated as being too hot and dry for the moth.Northern Europe and eastern European countries are too cold.

As the known range of the moth includes these areas,the corresponding parameters need to be adjusted.

© CSIRO

Codling Moth Parameter Fitting 

Western Asia is indicated as being too hot and dry for the moth.Northern Europe and eastern European countries are too cold.

As the known range of the moth includes these areas,the corresponding parameters need to be adjusted.

First line of attack might be to reduce the cold stress.  How?

© CSIRO

Western Asia is indicated as being too hot and dry for the moth.Northern Europe and eastern European countries are too cold.

As the known range of the moth includes these areas,the corresponding parameters need to be adjusted.

However, knowledge of the insect tells us that it has anobligate winter diapause.

First line of attack might be to reduce the cold stress.  How?

Codling Moth Parameter Fitting 

© CSIRO

From literature sources (see User’s Guide p45) we know:

Diapause is initiated with decreasing daylength, somewhere between 13 and 18 hours of daylight, and when summer temperatures drop below 15oC.

About 3 months below the developmental threshold are requiredfor successful completion of diapause.

Diapause is terminated when the necessary period of coolinghas been completed, and temperatures begin to rise between 0oC and 10oC.

Codling Moth Parameter Fitting 

© CSIRO

These findings indicate that the diapause parameters be set as follows:

DPD0:   14 hoursDPT0: 11oCDPT1: 6oCDPD: 90 daysDPSW: 0 (winter diapause)

See User’s Guide for more explanation

Codling Moth Parameter Fitting 

© CSIRO

Also adjust the following parameters:

DV0:  10oC TTCS ‐ 0oCDV1:  20oC THCS ‐ 0DV2:  30oC DTCS ‐ 0 degree‐daysDV3:  33oC DHCS ‐ 0

PDD ‐ 600 degree‐days

Codling Moth Parameter Fitting 

© CSIRO

Codling Moth Map 2 

Personal Use Only - Not for Further Distribution

© CSIRO

Examine locationsCold Stress ?Degree‐days ?

Codling Moth Parameter Fitting 

© CSIRO

Northern locations have a positive GI,but degree‐days < 600

Try reducing PDD to (say) 450

Codling Moth Parameter Fitting 

© CSIRO

Codling Moth Map 3

Personal Use Only - Not for Further Distribution

© CSIRO

Codling Moth Parameter Fitting 

Examine locationsHeat Stress ?Dry Stress ?

© CSIRO

Adjust the following parameters:

Heat Stress

TTHS - 33ºCTHHS – 0.0003

Codling Moth Parameter Fitting 

© CSIRO

Adjust the following parameters:

Heat Stress

TTHS - 33ºCTHHS – 0.0003

Moisture Index

SM0 – 0.02SM1 – 0.08SM2 – 1.0SM3 – 1.2

Codling Moth Parameter Fitting 

© CSIRO

Adjust the following parameters:

Heat Stress

TTHS - 33ºCTHHS – 0.0003

Moisture Index

SM0 – 0.02SM1 – 0.08SM2 – 1.0SM3 – 1.2

Dry Stress

SMDS – 0.02HDS – -0.003

Codling Moth Parameter Fitting 

© CSIRO

Adjust the following parameters:

Heat Stress

TTHS - 33ºCTHHS – 0.0003

Moisture Index

SM0 – 0.02SM1 – 0.08SM2 – 1.0SM3 – 1.2

Dry Stress

SMDS – 0.02HDS – -0.003

Wet Stress

SMWS – 1.2HWS – 0.0005

Codling Moth Parameter Fitting 

© CSIRO

Codling Moth Map 4

Personal Use Only - Not for Further Distribution

© CSIRO

Codling Moth World Distribution

© CSIRO

Realistically, it could take up to a month to create a good species parameter file that will give a good match to the known distribution and be consistent with any known biological data.

Parameter Fitting

© CSIROPersonal Use Only - Not for Further Distribution

© CSIROPersonal Use Only - Not for Further Distribution

© CSIRO

CliMond 500th user!

• www.climond.org• As of this morning 497 registered users• 2 weeks to go to our first birthday!

© CSIRO

Species X

Parameter Fitting Exercise

© CSIRO

Parameter Validation

© CSIRO

Projection

?

© CSIRO

• Capture all positive locations cfstatistics

• Use CLIMEX to set context for every new species study

• Listen to CLIMEX when fitting parameter values

Conclusions

Personal Use Only - Not for Further Distribution

© CSIRO

• Feedback – Discussion (10 min)

• Problems?

Parameter Fitting

© CSIRO

Importing point distribution data into CLIMEX

© CSIRO

Walking the Talk – a Procedure

• Collate species distribution and other data• Fit model to species native range (save the model)

– Start with stresses– Move on to growth indices

• Check, and if necessary refit model to a sub‐set of species invaded range

• Validate (test) model with independent data from species invaded range elsewhere

© CSIRO

Species Information

• Evidence for Non‐Climatic Factors • Stress• Constraints• Growth• Goodness of Fit• Validation• Source and Destination Risks• Conclusions

Template for CLIMEX Analysis

Personal Use Only - Not for Further Distribution

© CSIRO

Dymex – for when you crave more detail

• Insect population dynamics– Queensland Fruit Fly (Bactrocera tryoni)

• Weed landscape metapopulation dynamics– Acacia nilotica

• Weed biocontrol– Cleopus japonicus on Buddleja davidii

• Integrated weed management– Bitou bush, seed fly (Mesoclanis polana), fire, herbicide

© CSIROPersonal Use Only - Not for Further Distribution

Dymex population dynamics modelling

• Mechanistic modelling • Modular• Discrete timestep• Life history processes• Cohorts• Integrate multiple taxa

© CSIROPersonal Use Only - Not for Further Distribution

Why Dymex?

DYMEX automates much of the model building and simulation procedures:

• Generation of computer code• Support system with modules for routine functions:

– Output tables, graphs and now also maps – Meteorological data inputs– Optimisation and sensitivity analysis

© CSIROPersonal Use Only - Not for Further Distribution

Why Dymex?

• Re ‐useable & exchangeable modules • Environmental management drivers and their   interactions

• Biological processes and attributes to associate with lifecycle stages

• 'Inherit' / enhance properties • Library of functions• Spatial modelling platform

© CSIRO

The DYMEX Builder

Personal Use Only - Not for Further Distribution

Module Library

Timer

Data File Reader

Expression

Event

Evaporation Model

Soil Moisture Model

Lifecycle

Function Library

User Interface

Model DescriptionFile

© CSIRO

Structure of a DYMEX Model

Personal Use Only - Not for Further Distribution

Timer

File Reader

Daylength

Latitude

Evaporation

Lifecycle

Soil Moisture

© CSIRO

Structure of a DYMEX Model

Personal Use Only - Not for Further Distribution

Timer

File Reader

Daylength

Latitude

Evaporation

Lifecycle

Soil Moisture

Mo

de

l Ou

tpu

t

© CSIRO

Structure of a DYMEX Model

Personal Use Only - Not for Further Distribution

Timer

File Reader

Daylength

Latitude

Evaporation

Lifecycle

Soil Moisture

Mo

de

l Ou

tpu

t

File

Keyboard

© CSIRO

Growing a DYMEX Model

Personal Use Only - Not for Further Distribution

Model Complexity

© CSIROPersonal Use Only - Not for Further Distribution

The modules• Timer 

– Days since start– Day of year– Simulation date

• Meterological data [MetBase]– Minimum Temperature– Maximum Temperature

• Average daily temperature [Expression]• Bug lifecycle [Lifecycle]

© CSIRO

Add an adult lifestage

Personal Use Only - Not for Further Distribution

© CSIROPersonal Use Only - Not for Further Distribution

Add transfer to adult

© CSIROPersonal Use Only - Not for Further Distribution

Add fecundity and reproduction 

Fecundity fixed at establishment at 25

© CSIRO

Some DYMEX examples

Personal Use Only - Not for Further Distribution

© CSIRO

Insect population dynamics

• Yonow, T., Zalucki, M. P., Sutherst, R. W., Dominiak, B., Maywald, G. F., Maelzer, D. A. & Kriticos, D. J. (2004) Modelling the population dynamics of the Queensland Fruit Fly, Bactrocera (Dacus) tryoni: a cohort‐based approach incorporating the effects of weather.Ecological Modelling, 173, 9‐30.

© CSIRO

QLD Fruit Fly

© CSIRO

Weed landscape metapopulationdynamics

• Kriticos, D. J., Brown, J. R., Maywald, G. F., Radford, I. D., Nicholas, D. M., Sutherst, R. W. & Adkins, S. A. (2003) SPAnDX: a process‐based population dynamics model to explore management and climate change impacts on an invasive alien plant, Acacia nilotica. Ecological Modelling, 163, 187‐208.

© CSIRO

SPAnDX

© CSIRO

Interacting Lifecycles

© CSIRO

Weed biocontrol

• Buddleja davidii and Cleopus japonicus• Kriticos, D. J., Watt, M. S., Withers, T. M., Leriche, A. & Watson, M. (2009) A process‐based population dynamics model to explore target and non‐target impacts of a biological control agent. Ecological Modelling, 220, 2035‐2050.

© CSIRO

Buddleja‐Cleopus Major Model Components

• Plant– Germination

• Hydrothermal– Growth

• Temperature• Soil moisture• LAI• Plant Competition• Age• Herbivory

– Survival– Reproduction

• Insect– Development– Survival

• Age• Temperature• Host resource

– Reproduction• Temperature

– Dispersal• Host resource• Poorly understood!

© CSIRO

Buddleja‐Cleopus Model Lifecycle schematic

Personal Use Only - Not for Further Distribution

© CSIRO

Integrated weed management• Kriticos, D. J., Stuart, R. M. & Ash, J. E. (2003) Exploring interactions between cultural and biological control techniques: Modelling bitou bush (Chrysanthemoides monilifera ssp. monilifera) and a seed fly (Mesoclanis polana). Proceedings of the XI International Symposium on Biological Control of Weeds (eds J. M. Cullen, D. T. Briese, D. J. Kriticos, W. M. Lonsdale, L. Morin & J. K. Scott), pp. 559‐573. Canberra, Australia.

© CSIRO

B2MP Description• Climate‐driven & cohort‐based• Daily timestep• Temperature, rainfall and Pot Evap. inputs• Plant and animal growth and development driven by growth indices

• Dormancy, rotting, dispersal and germination of seedbank

• Density dependence seedlings, eggs, larvae• Simulates herbicide and fire effects• Built within DYMEX

© CSIRO

Bitou Bush lifecycle in B2MP

Dormant Seed

Seedling Juvenile Adult

Ray Floret

Sterile Fruit

Standing Dead Plant

Immature Fruit

Germinable Seed

© CSIRO

Mesoclanis polana

Chrysanthemoides monilifera

Egg Gravid Female

Teneral Female

Ray Florets

Sterile Fruit

Fruits not attacked

Attackedfruits

Dormant Seed

Immature Fruit

Eggs laid onto ray florets.

Larvae & pupae

attack fruits.

Larvae & Pupae

Personal Use Only - Not for Further Distribution

© CSIRO

“Automatic” Species Parameter Fitting

• Genetic algorithm in Version 3

• Automatic fitting is not a panacea

Discussion

© CSIRO

Case study:  Anastrepha fraterculus

Species Coeff.-1

0

1

Legend#* Known distribution

Species Convex Hull

World CountriesNative

0

1

CX Species range Distribution Toolbox

(set of models and scripts)

© CSIRO

Genetic Algorithm ResultsGeneration 1, Best value:  99.083  Average:  94.789  StdDev:   7.9087*** Best Genotype:  Values:    ‐19.72  ‐0.0523       20  ‐0.0942   31.585   

0.0303       76   0.0357   0.0972  ‐0.0523    1.303   0.0113   38.305    12.04     45.5;   Fitness   99.0826

Generation 2, Best value:  99.083  Average:  95.503  StdDev:  5.1778*** Best Genotype:  Values:    ‐19.72  ‐0.0523       20  ‐0.0942   31.585   

0.0303       76   0.0357   0.0972  ‐0.0523    1.303   0.0113   38.305    12.04     45.5;   Fitness   99.0826

Generation 57, Best value:  99.185  Average:   97.946  StdDev:  0.96942*** Best Genotype:  Values:    ‐12.12  ‐0.0744     60.6  ‐0.0627    30.52   

0.0527     57.8   0.0616   0.1545  ‐0.0381  4.08175    0.055    26.11     5.88    35.84;  Fitness   99.1845

© CSIRO

Genetic Algorithm In ActionKnown Distribution

Reference File

ModelledCore Distribution

Personal Use Only - Not for Further Distribution

© CSIRO

Regional Climate Matching

• Compare the climate of a (home) region to that of a selected set of (away) locations

• Independent of species biology• Overall level of similarity given by the ‘Composite Match Index’–product of selected component indices: 

e.g. Tmax, Tmin, Rain Total, RH, Rain Pattern

© CSIRO

Regional Climate Match Index Results –New Zealand

Personal Use Only - Not for Further Distribution

© CSIRO

Climate Datasetso Enhanced point locations database (~ 3 000 points)o CliMond 0.5 degree and 10’ grids for terrestrial areas

– Historical (1950‐2000) from Worldclim and CRU– IPCC AR4 datasets

o Based on CRU 0.5 degree gridded dataseto Selected periods to 2100o GCMs:  CSIRO3 and Miroco Scenarios:  A1B, A2

– Köppen‐Geiger climate zones– Raw monthly climate variables– 36 Bioclim variables– CLIMEX Metman, ASCII Grid, ESRI Grid

© CSIRO

Exercise

CLIMEX Manual Diapause

Species Parameter Fitting

Personal Use Only - Not for Further Distribution

© CSIRO

EI: Run 1 (14:44) North Americadat <Species 1>

No Climate ChangeVariable: EI

0

25

50

75

100

0 1,000

Mercator projection

No Diapause (23)

Personal Use Only - Not for Further Distribution

© CSIRO

Obligate Winter Diapause (24)

EI: Run 1 (16:41) North Americadat <Species 1>

No Climate ChangeVariable: EI

0

25

50

75

100

0 1,000

Mercator projection

Personal Use Only - Not for Further Distribution

© CSIRO

Obligate Summer Diapause (25)

EI: Run 3 (16:46) North Americadat <Species 1>

No Climate ChangeVariable: EI

0

25

50

75

100

0 1,000

Mercator projection

Personal Use Only - Not for Further Distribution

© CSIRO

Extracting Phenology from Geographic Distribution

Personal Use Only - Not for Further Distribution

© CSIRO

Exercise

Space and Time 

Convert Tsetse (Glossina morsitans)Distribution to Seasonal Phenology

Personal Use Only - Not for Further Distribution

© CSIRO

Glossinamorsitans

Personal Use Only - Not for Further Distribution

© CSIRO

Core Range Western Uganda

© CSIRO

Range Margin South Africa

© CSIRO

Compare Years

Personal Use Only - Not for Further Distribution

© CSIRO

• Life’s ups and downs: GIw• Annual Waves• Raw is dangerous 

Personal Use Only - Not for Further Distribution

© CSIRO

Compare Years

B. microplus with Amberley met data

Personal Use Only - Not for Further Distribution

© CSIRO

Raw is Dangerous

Daily

Weekly

AnnualCompare Locations

Compare Years

Tempe

rature

Why Compare Locations and Compare Years Don’t Talk to Each Other

Personal Use Only - Not for Further Distribution

© CSIRO

• Take monthly averages of daily meteorological data and then convert it back to weekly averages to introduce some smoothing

• Stress values often exceed 100 so you need to compare relative values

What Can You Do About It?

Personal Use Only - Not for Further Distribution

© CSIRO

Character Building:  The Gold in Failure

When Wrong is Exciting

Exercise

Getting it Wrong for Good Reasons

Discussion & Tutorial 8

Personal Use Only - Not for Further Distribution

© CSIRO

When Equal is Not the Same

Variances

Exercise

Cane Toads in Florida

Personal Use Only - Not for Further Distribution

© CSIRO

When There Aren’t Enough Days in the Year

PDD

Exercise

Haemaphysalis

Personal Use Only - Not for Further Distribution

© CSIRO

What to do about Hiccups –When the Rain Comes Back?

Bimodal Rainfall

Exercise

East Africa

Personal Use Only - Not for Further Distribution

© CSIRO

How to Make your Results Look (Too) Good

Validation against Independent Data 

Personal Use Only - Not for Further Distribution

© CSIRO

Aladdin’s Den

Treasure Trove Awaiting to be Discovered out there:

• Exploitation of spatial information

• Biological responses on geographical scales

• Detect role of climate vs other factors

Personal Use Only - Not for Further Distribution

© CSIRO

• Amblyomma ticks in Zimbabwe

• Old World Screw‐worm fly in Lybiao Irrigation

• Boophilus ticks in Africao Hybrid zone

• Gum leaf skeletoniser in Tasmaniao Extended native range

Some New Insights

Personal Use Only - Not for Further Distribution

© CSIRO

Species Parameter Fitting

Tutorial 7

Personal Use Only - Not for Further Distribution

© CSIRO

DPD0 10 hours

DPT0 10oC

DPT1 0oC

DPD 90 days

DPSW 0

Obligate Winter Diapause Parameters

Personal Use Only - Not for Further Distribution

© CSIRO

DPD0 10 hours

DPT0 30oC

DPT1 30oC

DPD 30 days

DPSW 1

Obligate Summer Diapause Parameters

Personal Use Only - Not for Further Distribution

© CSIRO

Websites

• CABI sponsored Demo of CLIMEX at: http://www.ento.csiro.au/climex/demo/climexdemowww.htm

• CLIMEX software & Patches from Hearne Scientifichttp://www.hearne.com.au

Resources

Personal Use Only - Not for Further Distribution

© CSIRO

CLIMEX Pathogen Models• Ekins,  M. G., Aitken,  E. A. B. & Goulter,  K. C.  (2002)  Carpogenicgermination of Sclerotinia minor and potential distribution in Australia.  Australasian Plant Pathology 31: 259‐265.• Lanoiselet, V., Cother, E.J. & Ash, G.J. (2002) Climex and Dymexsimulations of the potential occurrence of rice blast disease in south‐eastern Australia. Australasian Plant Pathology 31, 1‐7.• Yonow, T., Kriticos, D.J. & Medd, R.W. (2004) The potential geographic range of Pyrenophora semeniperda. Phytopathology 94, 805‐812.• Watt, M. S., Kriticos, D. J., Alcaraz, S., Brown, A. & Leriche, A. (2009) The hosts and potential geographic range of Dothistroma needle blight. Forest Ecology and Management, 257, 1505‐1519.• Pinkard, E. A., Kriticos, D. J., Wardlaw, T. J. & Carnegie, A. J. (2010) Estimating the spatio‐temporal risk of disease epidemics using a bioclimatic niche model. Ecological Modelling, 221, 2828‐2838.• Yonow, T., Hattingh, V. & De Villiers, M. (Submitted) CLIMEX Modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Protection.