AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE

Post on 23-Feb-2016

29 views 0 download

Tags:

description

AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE. Silesian University of Technology Faculty of Civil Engineering Department of Structural Engineering. ENGINEERING DIPLOMA. author: Agnieszka KNOPPIK. supervisor: PhD SE Marcin GÓRSKI. Aim of project. - PowerPoint PPT Presentation

Transcript of AIRPORT TERMINAL BUILDING FRP-REINFORCED GLULAM ROOF STRUCTURE

AIRPORT TERMINAL BUILDINGFRP-REINFORCED GLULAM

ROOF STRUCTURE

Silesian University of TechnologyFaculty of Civil EngineeringDepartment of Structural Engineering

ENGINEERING DIPLOMA

author:Agnieszka KNOPPIK

supervisor:PhD SE Marcin GÓRSKI

Aim of project

The aim of project was to design a roof structure of passenger terminal building for Katowice International Airport made of FRP-

reinforced glue-laminated timber frame system taking into consideration operation of

the building under standard operation conditions.

Range of project1. Architectural concept of terminal building2. Design models of roof structure

beam model (simplified) surface model (detailed)

3. Composition of loads and combinations of loads under standard operation conditions

4. Stength & stability analysis of roof structure analytic method (simplified) finate element method (detailed)

5. Spatial stiffening of roof structure6. Constructional drawings of main structure and

structural elements

Requirements

1. Legal requirements• aviation law• building law

2. Technical requirements• complex development of apron and terminal

3. Architectural requirements• functional program

1. Project basis

Passenger terminals1. Terminal 3 at Beijing Capital International

Airport, China• 986,000 m2 of total floor area• 3.5 km long• 5 floors• 50 mln passengers/year • structure – standard steel modules

2. Review of existing structures

2. Teminal at Chek Lap Kok Airport, Hong Kong• 515,000m2 of total floor area• 1.2km long• structure – RC frames, steel vaulted frames, waffle floor

3. New Teminal 2 a Mexico City International Airport, Mexico

• 350,000 m2 of total floor area• RC with masonry filling

Glulam hall structuresarches

trusssolid

domesribbed

net

framescolumn - beam

curved

2. Review of existing structures

Architectureground floor first floor

3. Structural solutions

My architectural concept

Structure B x L = 42.9 x 174.9 m; H ≈ 20 m

Load-bearing structure FRP-reinforced glulam cable-stayed frames every 6 / 9 m.

3. Structural solutions

Static model – beam modelarch elements replaced with sequence 0f straight segments

flexible supports replacing cables

4. Loads

Rough assesment of internal forces distribution.

Dead load

self load of roof covering

self load of structure

installations

roof bracing

case A - max. dead load

4. Loads

case B - min. dead load

Wind load PN-77-B-02011

qk = 550 Pa (account for thrust)

Ce = 1.2 (height-dependent)

β = 1.8 (initial assumption)

4. Loads

Wind load

case C wind from the left

Case E wind from the front

case D wind from the right

4. Loads

Snow load EN 1991-1-3

sk = 0.9 kN/m (zone II)

Ce = 0.8 (windswept topography)

Ct = 0.77 (glass roof covering)

4. Loads

Snow loadcase F

balanced situation

case Gunbalanced situation 1

case Hunbalanced situation 2

4. Loads

Temperature EN 1991-1-5 difference between FRP and

glulam: thermal expansion coefficientsheat transfer

changing cross-sections : different uniform temperature

moisture

Temperature difference

case I - summer ΔT = 200C

case J - winter ΔT = -200C

4. Loads

Combinations of loadsFundamental combination (ULS)

Characteristic combination (SLS)

5. Combinations of loads

always A / B + optionally C / D / E + F / G / H + I / J

dead load wind load snow load temperature

Envelopes of internal forces

Bending moments

Shear forcesNormal forces

5. Combinations of loads

FRP –reinforced glulamMoment curvature model – similar to reinforced concrete linear-elastic-ideal-plastic relationship within

cross-section linear-elastic behaviour of FRP Bernoulli hypothesis applied shear strength of bond between FRP and timber

greater than shear strength of timber along fibres ideally stiff bond, so εw = εf

substitute section method for stiffness evaluation influence of glue on stiffness neglected, Eglue =

Etimber

6. FRP-reinforced glulam

Mechanism of action. Modes of failure

7. ULS analytic

Ultimate Limit States7. ULS analytic

bending with axial tension

bending with axial compression (horizontal elements)

bending with axial compression (vertical elements)

Ultimate Limit Statesstrength condition at bent segments

shear strength

effective geometrical data ecountered

7. ULS analytic

Ultimate moment7. ULS analytic

effective height: h = h0 a c eh = h0 – hp b d f

neutral axis location:hn = hn(hf, E0, Ef, hp) a bhn = hn(hf, E0, Ef, hp, fm, fc) c dhn = hn(hf, E0, Ef, hp, fm, fc, εc) e f

modification factor:kM = kM(hn, hf, E0, Ef) a bkM = kM(hn, hf, hc, E0, Ef)c d e f

ULS control Control sections: bending + compressionControl sections: shear

7. ULS analytic

Static model – surface model8. ULS FEM

Static model – surface model8. ULS FEM

Dynamic wind action. Modal analysis

8. ULS FEM

n = 0.45 β = 1.51n = 1.28 β = 1.41n = 1.34 β = 1.41n = 1.90 β = 1.41n = 2.94 β = 1.42n = 4.07 β = 1.41

assumption

β = 1.8

satisfactory!

Ultimate stress8. ULS FEM

Model 1: High concetration of stresses at the internal supportModel 2. Increased stiffness of cables. Little change in stress distribution

Model 3. No cables. Little change in stress distribution

Model 4. Second column introduced. Satisfactory stress distribution

Ultimate stress8. ULS FEM

Model 5. Scheme

Reinforcement applied:• support area - 3 FRP strips h = 1.8mm, Ef = 300GPa along top fibres• sag area – 1 FRP strip h = 1.4mm, Ef = 300GPa along bottom fibres3 strips σt > 90% ft,0,g,d

2 strips σt > 80% ft,0,g,d

1 strip σt > 70% ft,0,g,d

Serviceability Limit States

instanteneous deflection final deflectionstiffness increase kEI ∙ EIkEI = kEI(hf, hp)

negligible effects of FRP creep

ufin = uinst (1 + kdef)

ufin ≤ ufin,net

9. SLS

Serviceability Limit States9. SLS

Deformation of girder under characteristic combination of loads

Horizontal displacements

Vertical displacements

Serviceability Limit States9. SLS

Control sections

section I-I

uins = 4.1cm kEI = 1.0 ufin = 6.2cm > unet = 5.0cm

section II-II

uins = 12.0cm kEI = 1.1 ufin = 16.0cm > unet = 10.0cm

+ reinforcement in sag area (3 FRP strips h = 1.8mm, Ef = 300GPa)

Serviceability Limit States9. SLS

Horizontal displacements

Vertical displacements

Serviceability Limit States9. SLS

Control sections

section I-I uins = 3.1cm kEI = 1.0 ufin = 4.6cm < unet = 5.0cm

section II-II uins = 8.4cm kEI = 1.25 ufin = 9.9cm < unet = 10.0cm

most unfavourable case A+H

1 strip kEI = 1.10 u1s

= 6.2cm2 strips kEI = 1.19 u2s = 6.7cm3 strips kEI = 1.26 u3s = 7.1cm

Bracings

wind truss bracing located horizontally

between adjacent frames

transfer wind load to foundations

located horizontally between adjacent frames

protect nodes of compressed elements against transverse movement

10. Spatial stiffening

Wind truss• transverse wind truss every 30m• longitudinal wind truss along outer edge of roof• wall truss

10. Spatial stiffening

Roof wind trussesTransverse truss designed for uniformly distributed load q

10. Spatial stiffening

Longitudinal truss designed for slenderness conditions:• compressed elements λ ≤ 250• tensiled elements λ ≤ 350

Wall trusses1. Wall truss being a component of transverse roof

truss designed for internal forces under q load2. Wall truss between external columns designed for

reaction from girder on columns R = 23kN

10. Spatial stiffening

Vertical bracing10. Spatial stiffening

Vertical bracing10. Spatial stiffening

Designed for concentrated load Q

Q = q ∙ a

Bolted joints (steel-to-timber joint)

10. Spatial stiffening

Thickness of steel plate

Required number of screws in joint per element

Number of connectors influences minimum width of connected element!

t = t(d, fuk)

R = R(fh,1,d, t1, d, Myd)

Supports10. Spatial stiffening

Support of girder on RC deck – pivot supportReaction from girder V

clamp stength of rocker/hull and roller

Support of girder on RC deck – column support Reaction from girder V

clamp stength of steel bearing and column

Glued joints10. Spatial stiffening

shear stress

tensile stress across fibres

CONCLUSIONS1. The effect of reinforcement on strength

and stiffness of glued-laminated timber elements

2. Comparison of analytic method and final element method

Articles

Books

9 Polish works 21 foreign works

1.Ajdukiewicz A., Mames J.: Konstrukcje z betonu sprężonego. Polski Cement Sp. z o.o., Kraków (2004)

2.Flaga A.: Inżynieria wiatrowa. Podstawy i zastosowania. Wydawnictwo “Arkady”, Warszawa (2008)

3.Jasieńko J.: Połączenia klejowe i inżynierskie w naprawie, konserwacji i wzmacnianiu zabytkowych kontrukcji drewnianych. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław (2003)

4.Łubiński M., Filipowicz A., Żółtowski W.: Konstrukcje metalowe. Część I: Podstawy projektowania, wydanie 2zm. Wydawnictwo ``Arkady'', Warszawa (2000)

5.Masłowski E., Spiżewska D.: Wzmacnianie konstrukcji budowlanych. Wydawnictwo ``Arkady'', Warszawa (2000)

6.Michniewicz Z.: Konstrucke drewniane. Wydawnictwo “Arkady”, Warszawa (1958)

7.Mielczarek Z.: Nowoczesne konstrukcje w budownictwie ogólnym. Wydawnictwo “Arkady”, Warszawa (2001)

8.Neufert E., Neufert P.: Architect’s data. 3rd edition9.Nożyński W.: Przykłady obliczeń konstrukcji budowlanych z drewna.

Wydanie 2 zm., Wydawnictwa Szkolne i Pedagogiczne S.A., Warszawa (1994)

10.Świątecki A., Nita P., Świątecki P.: Lotniska. Wydawnictwo Instytutu Wojsk Lotniczych, Warszawa (1999)

Bibliography

Standards1. PN-77-B-02011 – Obciążenia w obliczeniach statycznych.

Obciążenie wiatrem.2. PN-81/B-03020. Grunty budowlane. Posadowienie bezpośrednie

budowli – Obliczenia statyczne i projektowanie.3. PN-82/B-02402. Ogrzewnictwo – Temperatury ogrzewanych

pomieszczeń w budynkach.4. PN-90-B-03200. Konstrukcje stalowe. Obliczenia statyczne i

projektowanie.5. PN-B-03150:2000. Konstrukcje drewniane – obliczenia statyczne i

projektowanie.6. PN-B-03264:2002. Konstrukcje betonowe, żelbetowe i sprężone –

obliczenia statyczne i projektowanie.7. prEN 1990 – Eurocode 0: Basis of structural design.8. prEN 1991-1-1 – Eurocode 1: Actions on structures - Part 1-1:

General actions -Densities, self-weight, imposed loads for buildings.

9. prEN 1991-1-3 – Eurocode 1: Actions on structures - Part 1-3: General actions – Snow loads.

10. prEN 1991-1-5 – Eurocode 1: Actions on structures - Part 1-5: General actions – Thermal actions.

Bibliography

Legal papers1. Convention on International Civil Aviation. 9th edition (2006)2. Konwencja o miedzynaroodowym lotnictwie cywilnym (2002)3. Prawo budowlane. Ustawa z dnia 7 lipca 1994 r.4. Prawo lotnicze. Ustawa z dnia 3 lipca 2002 r.5. Rozporzadzenie Ministra Infrastruktury z dnia 31 sierpnia 1998 r.

w sprawie przepisów techniczno-budowlanych dla lotnisk cywilnych.

6. Rozporzadzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadac budynki i ich usytuowanie.

7. Rozporzadzenie Ministra Infrastruktury z dnia 25 czerwca 2003 r. w sprawie warunków, jakie powinny spełniac obiekty budowlane oraz naturalne w otoczeniu lotniska.

8. Rozporzadzenie Ministra Infrastruktury z dnia 30 kwietnia 2004 r. w sprawie klasyfikacji lotnisk i rejestru lotnisk cywilnych.

Bibliography

Web pages

Thank youfor attention

The End