ADAPTIVE LIGHTING CONTROLS PANEL · • Commissioning Training –Before starting installations!...

Post on 19-Mar-2020

0 views 0 download

Transcript of ADAPTIVE LIGHTING CONTROLS PANEL · • Commissioning Training –Before starting installations!...

ADAPTIVE LIGHTING CONTROLS PANEL:

Rick Kauffman, Kauffman Consulting, LLC, Moderator

Richard Jones, Ripley Controls, Southcon, Inc.

Rod Stummer, Owlet, Schreder Group

TOPICS•Communication standards; Open vs. Proprietary

•Commissioning

•Control System Features

•Reporting/User Interface

Open Communication

Standards

The 7 OSI Layers

The Open Systems Interconnection 

(OSI) Model was developed by 

International Organization for 

Standardization (ISO) in the 1980s as 

an attempt to make communication 

between any two systems possible.

Before this, every equipment 

manufacturer implemented its own 

set of rules (protocols). Therefore, two 

computers made by different 

companies could not "understand" 

each other. 

7

6

5

4

3

2

1

Open Systems Interconnection  History

• Defined by Hubert Zimmerman in 1978Consistent model of protocol layersDefined interoperability between network devices and software

• Refined and Published by ISO in 1984

• Considered too complicated, inefficient and un-implementable

• Eventually replaced by the Internet’s TCP/IP protocol

OtherApplications

OtherMedia Technologies ZigBee®

Technology

LonWorks™

TechnologyEIA & De facto Standard                                         

US DOT NTCIP 1213 Electrical Lighting & Management Systems

Standard

To Assure Interoperability,‐

All 7 OSI Layers Must Be Supported 

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Why ZigBee?• Open Global Standard• Supports Mesh Networks• Low Duty Cycle• Low Latency/Power• Low Cost• Up to 65,000 Nodes Per Network• 128-bit AES Encryption• Interoperability Between Products• Robust and Reliable• Self-healing, Re-routing Network

Why ZigBee?• Industrial Grade Wireless• 16 Communication Channels

• Each with Max. Bandwidth• Auto or Manual Selection• Dynamic Frequency Hopping• Noise Detection

• 250 kbit/second• 50X Faster than Powerline• Open Intl. Standard IEEE 802.15.4

Zigbee Applications

• Demand Response • Advanced Metering Infrastructure • Automatic Meter Reading • Lighting controls • HVAC control • Heating control • Wireless smoke and CO detectors • Home security • Blind, drapery and shade controls • Medical sensing and monitoring • Remote control of home entertainment systems • Indoor location sensing • Advertising on mobile devices

ZigBee 802.11 (Wi‐Fi)

Bluetooth UWB (Ultra Wide Band) Wireless USB IR Wireless

Data Rate 20, 40, and 250 Kbits/s 11 & 54 Mbits/sec 1 Mbits/s 100‐500 Mbits/s 62.5 Kbits/s 20‐40 Kbits/s

115 Kbits/s

4 & 16 Mbits/s

Range 10‐100 meters 50‐100 meters 10 meters <10 meters 10 meters <10 meters (line of 

sight)

Networking Topology Ad‐hoc, peer to peer, 

star, or meshPoint to hub Ad‐hoc, very small 

networksPoint to point Point to point Point to point

Operating Frequency 868 MHz (Europe)

900‐928 MHz (NA), 2.4 

GHz (worldwide)

2.4 and 5 GHz 2.4 GHz 3.1‐10.6 GHz 2.4 GHz 800‐900 nm

Complexity (Device and 

application impact)Low High High Medium Low Low

Power Consumption (Battery 

option and life)Very low (low power is 

a design goal)High Medium Low Low Low

Security 128 AES plus 

application layer 

security

64 and 128 bit 

encyption

Other Information Devices can join an 

existing network in 

under 30ms

Device connection 

requires 3‐5 secondsDevice connection 

requires up to 10 

seconds

Typical Applications Industrial control and 

monitoring, sensor 

networks, building 

automation, home 

control and 

automation, toys, 

games

Wireless LAN 

connectivity, broadband 

Internet access

Wireless connectivity 

between devices such 

as phones, PDA, 

laptops, headsets

Streaming video, home 

entertainment 

applications

PC peripheral 

connectionsRemote controls, PC, 

PDA, phone, laptop 

links

Where Does ZigBee Fit?

ZigBee – A Growing Standard!

“Low power wireless sensing and control markets, enabled by ZigBee, are 

experiencing exponential growth. Today, ZigBee chipset suppliers

are shipping tens 

of millions of units and the market is poised to grow to hundreds of millions of 

units within the next few years. Our research with more than 600

companies has 

found that the ZigBee market has "crossed the chasm" and is now a mainstream 

technology. Despite a challenging economy, 802.15.4/ZigBee unit sales have 

increased an average of 62% per year since 2007. Moreover, chipsets using ZigBee 

specifications made up 75% of the 802.15.4 shipped units in 2009.”

ON WORLD

Research Group (Published May 

‘10)

Rod Stummer

Director of Business Development

OWLET/Schreder Lighting

2105 W. Corporate Drive, Addison, IL  60101

Office: 847‐621‐5100  Cell: 847‐345‐2414

r.stummer@schreder.com

The Considerations for an Open Standard

Zigbee – some background

•Created for applications such as Home Area Networks (HAN) that 

are suited for low power consumption and short distances

•In order to meet the needs of a Wide Area Network such as street

lighting, the power has to be greatly increased and the number of 

potential nodes increased.

•Most “modified”

Zigbee products will not interact with other 

Zigbee products

Zigbee

•Increased Zigbee coverage means increased latency

•Bands: 868 MHz (Europe), 915 MHz (US), 2.4 GHz (International –

Most Common)

•At the PHY layer, a 915 MHz device cannot communicate with a 2.4

GHz device

The “World‐Wide”

2.4 GHz ISM Band

•2.4 GHz Pros– International – Can use in most countries

– Large bandwidth, allows numerous channels

– 100% duty cycle is possible– More compact antenna than 915 MHz

•2.4 GHz Cons– Shorter range (poorer propagation) than 915 MHz band 

with same power

– Must share with WiFi, Bluetooth, Cordless Phones, 

Wireless Game Pads, Toys, Wireless Audio Devices, PC 

Peripherals, and Microwave Ovens

Mesh versus Star Network

•New mesh node must be “built”

from Gateway outward

•New star node can be placed anywhere in cell coverage area•Zigbee distance limited to several hundred feet

•UNB distance several miles

UNB Technology(Ultra Narrow Band)

A proprietary communication system

•Range of 2‐5 miles (Zigbee range measured in feet)

•One Base Station (Gateway, collector) can handle up to 10,000 street lights, 

thus minimizing the number of backhauls (minimizing monthly telecom bills)

•Measurements include ambient light levels and temperatures

•Aux controls can include traffic flow and other considerations•Street light controls (endpoints) can be randomly installed throughout the 

coverage area, greatly simplifying new system commissioning

•Direct connection between each Base Station and endpoint, reducing system 

latency

Commissioning a System•Commissioning Plan

– RF Mapping Plan for Network Planning• Important to plan the optimum number and positions for the Base 

Stations (Gateways) to achieve proper radio coverage. Radio 

planning tools should be used that make use of geographic terrain 

and clutter data and radio propagation models.

• The radio model / map is then used in conjunction with a site 

survey with local authorities and contractor staff to confirm Base 

Station sites and document installation details.

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

San Francisco Radio Mapping

• Asset list and information

• Commissioning Training – Before starting 

installations! 

• Dimming profiles for each type fixture (response to 

0‐10 v dimming signal is not typically linear)

• Operational Training – make sure user’s 

expectations are realistic

• Make it clear that little effort into system = poor 

results from system

Commissioning

The endpoints (nodes)of a mesh network mustbe installed starting close to the coordinatorin order to maintain the mesh.

The endpoints of a star network can be installed randomly throughout the coverage area.

Dimming•Different types of dimming controls:

– 0‐10 VDC• Currently most common in the US

• Simple

• Only one way communication–

cannot send information 

from the ballast/driver back through the system

– DALI (Dimmable Addressable Lighting Interface)

• Becoming increasingly used in Europe

• Offer two way communication – able to read information 

from the ballast/driver back through the system

• DALI was designed for interior lighting…

commands not ideal 

for street lighting

Two different fixtures showing their dimming response to a 0-10 volt control

Dimming Profile

Street Light Metering(More questions than answers!)

•Who owns the meter?

•What is the accuracy of the meter and how is proper calibration 

maintained?

•Is the utility to have an audit program?

•Who maintains the data and how is security maintained?

•Are the data to be presented to the utility as a list of individual  street lights or in the aggregate?

•What accuracy does the industry need? (What accuracy do we 

have now? Consider the statistical aggregation compensating for 

the individual accuracy variation.) 

Factors Affecting Meter Accuracy

• Temperature

• Range (voltage, current, power)• Power Factor• Frequency• Calibration• Cost

Meter Accuracy

Source: Analog Devices, Model: ADE7763

Sensing

• Ambient Temperature

• Ambient Light Levels

• Pedestrian Traffic Volumes

• Vehicle Traffic Volumes

• Ground Faults• Wire Theft

CONTACT INFORMATION:

Richard Jones

Vice President

Ripley Lighting Controls

2023 Platt Springs Rd

West Columbia, SC  29169

803‐939‐4700

rjones@ripleylc.com

User Interfaces

Field LevelRF Communication Interface (IEEE 802.15.4, ZigBee Protocol)Enables the luminaire controller to control the LED driver

Gateway LevelCommunication interface to the management serverManages and stores information from the field controllers

Server LevelScalable database (Microsoft, Oracle, SAP)Webserver applicationProvides a graphical user interface (GUI) reachable with a standard webbrowser (Internet Explorer, Firefox, Chrome, Safari, etc.)

User Interfaces

Graphical User Interface

Used during commissioning to locate luminaire controllers and 

gateway routers on mapping software

Mapping Interface

Used to visually monitor operation of field level luminaire 

controllers and gateway routers

Mapping Interface

•Malfunctions (Error Reporting)

Broken lamp/ballast, energy‐limits, power factor, lost nodes, 

communication loss

Reporting System

Example of Error Reporting Screen

•Malfunctions (Error Reporting)

Broken lamp/ballast, energy‐limits, power factor, lost nodes, 

communication loss

•Monitoring (Live View)

Individuals/Groups, Dim‐Levels, Control‐Signals, Run Hours, 

Switch On/Off Times, Errors, Energy Consumption, Electrical 

Power Usage, Voltage, Current, Power Factor, Controller Failure,

Device Uptime, Temperature, Communication Quality, 

Timestamp, Calculated Sun Elevation, Device Information

Reporting System

Example of Monitoring Screen

•Reporting (Energy and Detail Report)Energy Consumption on City, District, Area and Streetlight Level

Table and Chart Views

Streetlight Level:  Energy Consumption, Run Hours, Burning 

Hours Dimming Profile, On/Off Times, Error List

Reports Viewable On‐Line and Exportable to CSV and PDF

Reporting System

Example of Screen Reports

Energy Report

Error Report

Sample of Admin Screen

Example of Admin Screen

Example of Configuration Screen

SmartPhone, iPAD, Remote Interface

Controls Panel

CONTACT INFORMATION:

Rod Stummer

Director of Business Development

OWLET/Schreder

Lighting

2105 W. Corporate Drive, Addison, IL  60101

Office: 847‐621‐5100  Cell: 847‐345‐2414

r.stummer@schreder.com

???