Accelerating Industrialization and remaining challenges for SiC...

Post on 29-Jun-2020

1 views 0 download

Transcript of Accelerating Industrialization and remaining challenges for SiC...

Accelerating Industrialization and remaining challenges for SiC power devices

Thomas NEYER, tech. fellow, SiC Technology

- Substrate needs

- critical substrate supply

ON’s status chart for SiC

0

5000

10000

15000

20000

25000

30000

35000

40000

2015 2016 2017 2018 2019 2020

- Product releasesDiodes:4A – 50A for 650V available as discretes6A – 50A for 1200V an in modules

MosFET:Q1/2018: 80mΩ 1200V in TO247 released – safe launchfrom Q2/2019:20mΩ, 40mΩ, 160mΩ in TO247-3LQ2 same products in D2PAK-7L, TO247-4L

alt. sources under evaluation

Sources secured

SiC 6” Volume ramp-up

Huge Fab capacity available: >10.000 WSPWGlobal Development - 24hrs: Asia/EU/US

12/12/20183

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

2015 2016 2017 2018 2019 2020

SIC WEEKLY WAFER STARTSSBD MosFET Modules

Customer projects SiC MosFET - OBC

40kW on-board rapid charger for E-Bus fleet (36 SiC MosFETs/system)

Performance traits:- Excellent current sharing- Good dvdt control (>25V/ns)- Active rectification- zero field fails

Customer projects SiC MosFET – FormulaE

High performance traction system:50A Diodes1200V 160A MosFET (16 in parallel)Overdrive boost (increased VDC, VGS_op)

12/12/20185

SiC performance beats Silicon in volume applications

Traction system level evaluation:

12/12/20186

UpperIGBT

LowerIGBT

UpperDiode

LowerDiode

UpperMOSFET

LowerMOSFET

UpperMOSFET

LowerMOSFET

UpperMOSFET

LowerMOSFET

SW Loss, W 312.29 314.02 54.16 53.80 7.35 7.35 13.68 13.67 8.14 8.13Cond Loss, W 190.45 191.01 38.25 37.74 501.99 501.69 140.42 140.50 178.22 177.93Max Temp, °C 116.52 116.52 81.11 81.11 141.80 141.80 83.73 83.73 87.62 87.62

117 117

81 81

142 142

84 84 88 88

0

20

40

60

80

100

120

140

160

0

100

200

300

400

500

600

Tem

pera

tire,

C

Loss

es, W

Die

Motoring Operation Die Losses (per switch) and Temperature

Cond Loss, W SW Loss, W Max Temp, °C

IGBT/Diode 2X5.6mm2 2X8mm2 4X5.6mm2

2X15mm2 + 2X10mm2

Other system evaluations in ON: 3-phase 10kW OBC/PFC stage

70-140kHz Peak efficiency: ~99% (limited by inductor)

Full-bridge DCDC converter (hard switching)

Vin=400V, Vout=220V, Tj=110 C, 13ARMS

4xNTHL040N65S3F (650V, SuperFETIII): Peak efficiency: 90.6%

4x60mΩ (900V, SiC MosFET): Peak efficiency: 94.0%

SiC MosFET competitive in Si Super Junction applications

Example 900V SiCFET vs 650V SuperJunction FET for LLC

due to low QOSS, QG and Qrr – SiCFET excellent in LLC

12/12/20187

SiC performance beats Silicon IGBTs in the lab

12/12/20188

FS4-1200V 20A vs. ON Semi SiC MOSFET under identical drive conditions

no current tail

faster Turn-on current

fast SiC turn-off600V 500A turn on

VGE= - 5 / +20V

Eon at 25°C

Paralleling of 20mΩ ON Semi SiC MosFETs vs IGBTs

Eoff at 25°C

fast SiC turn-on

Challenges – limiting factor for scaling

Limiting factor for SiC MosFET: Rsp [mΩ.cm2] – channel resistance

Approaches:- Vertical channel (ie Trench) – E shielding challenge- Deposited GOX – intrinsic quality- Low temperature GOX formation - research

12/12/20189

Resistancecomponent

Resistancepercentage

N+ source 0.6 %

Channel 59.0 %

JFET 20.5 %

N Epi 14.3 %

Sub 5.6 %

①②③

Challenges – cooling for small die sizes

Real estate for a 60kW 800V DC inverter switch

in scaleGen 1: 20%

die area

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Si-IGBT SiC FET 1 SiC FET2 SiC FET 3

Power dissipation capability [W]

0

2

4

6

8

10

12

14

Si-IGBT SiC FET 1 SiC FET2 SiC FET 3

Power density [W/mm2]

Perfect cooling

singleside

direct cooling

doublesidedirect cooling

Increase SiC Tjmax to 200 C

Ag sinteringGen 2

Gen 3

Challenges - SiC chip in discrete package

Large SiC chips in discrete packages

Temperature cycling (-55C – 150C)

12/12/201811

FEA modeling discovers:

Dependent on chip design, certain locations experience >20 times stress and strain during cycling than Silicon chip

Material Si SiC

Elastic Modulus (Gpa) 130 410

Tensile strength (Mpa) 7000 3440

Hardness (mohs) 6.5 9

CTE (1E-6/C) 2.6 4.5

Overcame problem with patented design and optimized assembly BOM

Typical failure cases for GOX (HTGB – burn-in):

SiC MosFET in its infancy of volume production (compared to Si), Oxide is thinner and intrinsically less clean

Challenges - SiC MosFET in its infancy

Gate oxide integrity for SiC MosFETs and TDDB

0.01%

0.1%

1%

5%10%

50%

99.99%

EPI defects

Bias voltage [V]Fa

ilure

pro

babi

lity

In (early) mass production SiC MosFETs need - optimized cleaning, oxidation and anneal- Very low electric field (<3 MV/cm)- tight inline contamination control- highest substrate and Epi quality

Implemented at ON-Semi:

- 100% Epitaxy defect screening- 100% metallic cleaning efficiency- 100% electrical test screening (incl. burn-in)- 100% in-process defect control

Challenges - SiC Epitaxy and defectivity control

Tracing back burn-in failures to substrate defects

Made visible by post Epi scans

12/12/201814

Challenges - unconstrained supply chain

Cost: 30% 30% 15% 12% 13%

12/12/201815

external

within ON Semi

SiC Wafering

Roznov, Czech Republic

ON SiC Vertical Integration

External boule supply

several sources

SiC FE Process

Bucheon, Korea

Thinning, backmetal

Bucheon, Korea

WAT/Sort test

Bucheon, Korea

Assembly, test

Suzhou, China and Seremban, Malaysia

Applications

SiC Epi, Metrology

South Portland, MA, USAand Bucheon, Korea

Thank Youany questions:

thomas.neyer@onsemi.com