16.362 Signal and System I The representation of discrete-time signals in terms of impulse Example.

Post on 17-Jan-2018

216 views 0 download

description

Signal and System I The representation of continuous-time signals in terms of impulse Properties of LIT systems Commutative property Distributive property

Transcript of 16.362 Signal and System I The representation of discrete-time signals in terms of impulse Example.

16.362 Signal and System I • The representation of discrete-time signals in terms of impulse

]0[][]0[ xnx

k

knkxnx ][][][

][][][ kxknkx

]1[]1[]1[ xnx

0

][

][][][

k

k

kn

knkunu

Example

16.362 Signal and System I • The representation of discrete-time signals in terms of impulse

k

knkxnx ][][][

][n ][nh ][][ nhny

k

knkxnx ][][][

k

k

knxkh

knhkxny

][][

][][][

][][][ nxnhny

][][][ nhnxny

Convolution

16.362 Signal and System I • The representation of continuous-time signals in terms of impulse

')'()'()( dttttxtx

')'()'()( dttthtxty

)()()( txthty

• Properties of LIT systems

Commutative property

)()()( txthty

)()()( thtxty

Distributive property

)()()()(

)()()()(

21

21

txthtxthtxththty

16.362 Signal and System I • Properties of LIT systems

Associative property

)()()(

)()()()()()()(

21

21

21

txththtxththtxththty

Causality

,0)( th for t<0.

,0][ nh for n<0.

Stability

dtth )(

n

nh ][

16.362 Signal and System I • The unit step response of an LTI system

][n ][nh ][ny

][nu ][nh ][ns

k

knhkny ][][][

][

][][][

nh

knkhnyk

n

k

k

kh

knukhns

][

][][][

16.362 Signal and System I • The unit step response of an LTI system

][nu ][nh ][1 ns

n

k

khns ][][1

]1[ nu ][nh ][2 ns

1

2

][

]1[][][

n

k

k

kh

knukhns

]1[][][ 1

1

2

nskhnsn

k

][]1[][ 11 nhnsns

16.362 Signal and System I • The unit step response of an LTI system

][n ][nh ][nh

][nu ][nh ][ns ][]1[][ nhnsns

16.362 Signal and System I • Linear constant-coefficient difference equations

][nx

][]1[21][ nxnyny

?][ ny ?][ nh

][ny depends on x[n]. We don’t know y[n] unless x[n] is given.

But h[n] doesn’t depend on x[n]. We should be able to obtain h[n] without x[n].

How?• Discrete Fourier transform, --- Ch. 5.

• LTI system response properties, this chapter.

][nh

][ny

21

+

delay

16.362 Signal and System I • Linear constant-coefficient difference equations

][]1[21][ nxnyny

][]1[21][ nnhnh

]1[21][ nhnh

][]1[21][ nnhnh

When n 1, 21

]1[][

nhnh

n

Anh

21][

][21][ nuAnh

n

Causality

][n

][nh

][nh

21

+

delay

16.362 Signal and System I • Linear constant-coefficient difference equations

][n

][nh

][nh

21

][]1[21][ nxnyny +

][]1[21][ nnhnh delay

][]1[21][ nnhnh

][21][ nuAnh

n

Determine A by initial condition:

When n = 0, 1]0[]0[ h

]0[21]0[

0

uAh

A = 1

16.362 Signal and System I • Linear constant-coefficient difference equations

]1[ n ][]1[21][ nxnyny

][]1[21][ nnhnh

][21][ nunh

n

?][ ny

Two ways:

(1) Repeat the procedure

(2) ][][][ nhnxny

]1[21

]1[][]1[][

1

nu

nhnhnny

n

][nh

][nh

21

+

delay

16.362 Signal and System I • The unit step response of an LTI system, continuous time

)(t )(th )(ty

)(tu )(th )(ts

)(

)()()(

th

dnhty

)()( thdttds

t

dh

dtuhts

)(

)()()(

16.362 Signal and System I • Linear constant-coefficient difference equations

)(tx)(

21

21)( txdtdyty

?)( ty ?)( th

)(ty depends on x(t). We don’t know y(t) unless x(t) is given.

But h(t) doesn’t depend on x(t). We should be able to obtain h(t) without x(t).

How?• Continuous time Fourier transform.

• LTI system response properties, this chapter.

)()(2 txtydtdy

)(th

)(ty

21

+

dtd

21

16.362 Signal and System I • Linear constant-coefficient difference equations

)(t

When t>0,dtdyty

21)( tAety 2)(

Determine A by initial condition:

)()( 2 tuAeth t

Causality

)(21

21)( txdtdyty

)(21

21)( tdtdyty

)(21

21)( tdtdyty

)(th

)(ty

21

+

dtd

21

16.362 Signal and System I • Linear constant-coefficient difference equations

Determine A by initial condition:

)()( 2 tuAeth t

)(21)()

21()()2(

21)( 222 ttAetuAetuAe ttt

A = 1 )()( 2 tueth t

)(t)(

21

21)( txdtdyty

)(21

21)( tdtdyty

)(th

)(ty

21

+

dtd

21

16.362 Signal and System I • Linear constant-coefficient difference equations

)()( 3 tuKetx t

][5

][

)]()[(

)()(

)()()(

23

52

)(23

)(23

tt

t

o

t

t

o

t

t

eeK

deKe

deKe

dtueuKe

dthx

thtxty

)(th

)(ty

21

)(21

21)( txdtdyty +

dtd

21

)()( 2 tueth t

)(][5

)( 23 tueeKty tt

16.362 Signal and System I • Singularity functions

)()(0 ttu Define:

dttdtu )()(1

n

n

n dttdtu )()(

)()()(1 tudtut

du

dtuu

tututu

t

)(

)()(

)()()( 112

du

tutututut

n

n

)(

)()()()(

)1(

16.362 Signal and System I • Singularity functions

)()()()()( 0 txttxtutx

dtdx

tudtdx

dtdtdxu

tdxuutx

dutx

dtxututx

)(

)()()(

)()(|)()(

)()(

)()()()(

0

0

00

0

11

n

n

n dttxdtutx )()()(

dttdxtutx )()()( 1

)()()( 0 txtutx

16.362 Signal and System I • Singularity functions

n

n

n dttxdtutx )()()(

dttdxtutx )()()( 1

)()()( 0 txtutx )()()()( 21

11 tudttdututu

)()()()( 111 tutututu k

k terms

16.362 Signal and System I • Singularity functions

dx

dtux

tutxtutx

t

)(

)()(

)()()()( 1

n

n

n dttxdtutx )()()(

t

dxtutx )()()( 1

)()()( 0 txtutx

ddx

tudx

tututxtutx

t

t

')'(

)()(

)()()()()( 2

)()()(2 tututu

16.362 Signal and System I • Singularity functions --- discrete time

]1[][][1 nnnu Define:

]1[][][ 11 nununu kkk

]1[][]1[][][][][][ 1

nxnxnnxnnxnunx

]1[][][][ 1111 nunununu

]1[][][][ 1 nxnxnunx

16.362 Signal and System I • Singularity functions --- discrete time

][][1 nunu

Define:

1][][][

][][][ 112

n

kk

nkuknuku

nununu

n

kx

knukx

nunxnunx

][

][][

][][][][ 1