1 Age Specific Cancer Incidence for Two Major Historical Models, Compared to the Beta Model and SEER...

Post on 13-Dec-2015

216 views 2 download

Tags:

Transcript of 1 Age Specific Cancer Incidence for Two Major Historical Models, Compared to the Beta Model and SEER...

1

Age Specific Cancer Incidence for Two Major Historical Models, Compared to

the Beta Model and SEER Data

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

Age

Age

-Spe

cific

Inc

iden

ce (p

er 1

00,0

00)

A-D power law

MVK clonal expansion

Beta model

SEER (all sites M, F)

I(t)=(t) k-1(1-t

I(t)=at k-1

I(t) 12 N(s)exp[(2 -2 )(t -s)]ds

2

Beta Fit to SEER DataAge-specific incidence per 100,000

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Colon rectum

Male Female = 0.00732 0.00717 = 0.01003 0.00995k-1 = 7 7.3Fit = 1.00 1.00

b

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Lung and bronchus

Male Female = 0.00755 0.007 = 0.0105 0.0108k-1 = 6.6 6.5Fit = 0.99 0.98

a

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Urinary bladder

Male Female = 0.00688 0.00525 = 0.01007 0.0098k-1 = 7.2 6.7Fit = 1.00 1.00

c

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Non-Hodgkins lymphoma

Male Female

a = 0.00509 0.00481

b = 0.00997 0.0101k-1 = 5.7 5.7Fit = 0.99 1.00

d

3

Beta Fit to SEER DataAge-specific incidence per 100,000

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Leukemias

Male Female = 0.0048 0.0043 = 0.00925 0.009k-1 = 5.9 5.9Fit = 0.99 0.99

e

0

20

40

60

80

100

120

0 20 40 60 80 100

Melanomas

Male Female = 0.0023 0.00034 = 0.0089 0.007k-1 = 3.5 2Fit = 1.00 0.98

f

0

20

40

60

80

100

120

0 20 40 60 80 100

Oral cavity and pharynx

Male Female = 0.0038 0.00305 = 0.01015 0.00985k-1 = 4.6 4.6Fit = 0.99 0.99

h

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Stomach

Male Female = 0.00542 0.00475 = 0.00952 0.00925k-1 = 6.7 6.7Fit = 1.00 1.00

g

4

Beta Fit to SEER DataAge-specific incidence per 100,000

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Kidney and renal pelvis

Male Female = 0.00435 0.0038 = 0.0102 0.0102k-1 = 5.2 5.2Fit = 0.99 1.00

a

j

0

20

40

60

80

100

120

0 20 40 60 80 100

Pancreas

Male Female = 0.00545 0.00515 = 0.00995 0.0095k-1 = 6.6 6.6Fit = 1.00 1.00

i

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

Esophagus

Male Female = 0.00464 0.00363 = 0.01035 0.0097k-1 = 6 6Fit = 0.98 0.98

l

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Multiple myelomas

Male Female = 0.00493 0.00463 = 0.00998 0.01015k-1 = 6.5 6.5Fit = 1.00 1.00

k

5

Beta Fit to SEER DataAge-specific incidence per 100,000

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

Larynx

Male Female = 0.0047 0.0031 = 0.0108 0.0108k-1 = 5.9 5.4Fit = 0.96 0.93

n

0

10

20

30

40

50

60

0 20 40 60 80 100

Liver and bile duct

Male Female = 0.00439 0.00411 = 0.01025 0.01k-1 = 5.8 6.3Fit = 0.99 1.0

m

0

5

10

15

20

25

0 20 40 60 80 100

Thyroid

Male Female = 0.0002 0.00025 = 0.009 0.0102k-1 = 2 1.9Fit = 0.96 0.71

p

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Brain and other nervous

Male Female = 0.00295 0.002655 = 0.0102 0.0102k-1 = 4.5 4.5Fit = 0.94 0.94

o

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

6

Beta Fit to SEER DataAge-specific incidence per 100,000

0

2

4

6

8

10

12

0 20 40 60 80 100

Hodgkins disease

Male Female = 0.000008 0.0000013 = 0.0098 0.0098k-1 = 1.2 1Fit = 0.27 0.01

q

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

Total non-sex sites

Age-specific cancer incidences for all 17 non-sex sites summed for each age interval, for both SEER data and Beta fits.

r

7

Beta Fit to SEER DataAge-specific incidence per 100,000

0

100

200

300

400

500

600

0 20 40 60 80 100

Breast (F)

= 0.00375 = 0.0115 k-1 = 2.8 Fit = 1.00

b

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Prostate

= 0.0085 = 0.0122 k-1 = 4.8 Fit = 0.96

a

For the 6 gender-specific sites the fits are performed with t

= (age-15) 0, as suggested by Armitage and Doll (1954).

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Corpus Uteri

= 0.0038 = 0.0124 k-1 = 3.7 Fit = 0.98

c

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Ovary

= 0.00142 = 0.0108 k-1 = 2.6 Fit = 1.00

d

8

Beta Fit to SEER DataAge-specific incidence per 100,000 (Ries et al 2000)

0

20

40

60

80

100

120

140

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

0 20 40 60 80 100

0

5

10

15

20

25

0 20 40 60 80 100

Cervix Uteri

= 0.0000065 = 0.01 k-1 = 1 Fit = 0.91

e

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

Testis

= 0.000035 = 0.029 k-1 = 1.1 Fit = 0.87

f

9

Beta Fit to California DataAge-specific incidence per 100,000 (Saltzstein et al 1998)

0

100

200

300

400

500

600

0 20 40 60 80 100

California (M)

Model Fit to SEER (M)

California (F)

Model Fit to SEER (F)

aColorectal

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

bBronchus, lung

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

cProstate

0

100

200

300

400

500

600

0 20 40 60 80 100

dBreast

10

Beta Fit to Dutch DataAge-specific incidence per 100,000 (de Rijke et al 2000),

error bars ±2 SEM

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Male (Rijke 2000)

Male (Model Fit to SEER)Female (Rijke 2000)

Female (Model Fit to SEER)

Colorectal a

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

Lung b

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Prostatec

0

50

100

150

200

250

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

e

0

100

200

300

400

500

600

0 20 40 60 80 100

Breastd

11

Beta Fit to Dutch DataAge-specific incidence per 100,000 (de Rijke et al 2000),

error bars ±2 SEM

0

50

100

150

200

250

0 20 40 60 80 100

Stomach f

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

Bladder e

12

Age-Specific Incidence Normalized to the Peak Value

for Each Cancer. All Male Sites Except Childhood Cancers (Hodgkins, Thyroid, Testes).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100Age

Age

-Spe

cific

Can

cer

Inci

denc

e N

orm

aliz

ed to

Pea

k

Brain (M)

Colo-rectal (M)

Esophagus (M)

Kidney (M)

Larynx (M)

Leukemias (M)

Liver (M)

Lung (M)

Melanomas (M)

Myelomas (M)

Lymphoma (M)

Oral (M)

Pancreas (M)

Stomach (M)

Bladder (M)

Prostate

Mean (SEER-M)

Beta model of SEER

Colorectal (Dutch)

Lung (Dutch)

Prostate (Dutch)

Stomach (Dutch)

Lymphoma (Dutch)

Bladder (Dutch)

Esophagus (HK)

Stomach (HK)

Colorectal (HK)

Lung (HK)

Prostate (HK)

Bladder (HK)

Colorectal (Calif)

Lung (Calif)

Prostate (Calif)

eta parameters

k

13

Liver Tumor Rates Vs. Age for NTP (TDMS) Mice Controls Removed for

Natural Death or MorbidityLiver Hepatocellular Carcinoma Rate

in B6C3F1 Mice Controls: Natural Death or Moribund Sacrifice

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

Age at Death

Perc

ent w

ith T

umor

All TDMS (Ad Libitum) Controls

Dietary Restricted (Scopolamine study)

3rd order polynomial fit to data points

Liver Hepatocellular Adenoma Rate in B6C3F1 Mice Controls:

Natural Death or Moribund Sacrifice

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

Age at Death

Perc

ent w

ith T

umor

All TDMS (Ad Libitum) Controls

Dietary Restricted (Scopolamine study)

3rd order polynomial fit to data points

Error bars = ±1 SEM

14

ED01 Control Mice Age-Specific Mortality With Beta Function Fit.

RCSTY_B: Reticulum Cell Sarcomas

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

Age (days)

% p

er 1

00 a

nim

al-d

ays

at r

isk

Age-specific mortality M(t)

Beta model fit to M(t)

Age-specific incidence I(t) (from Sheldon)

M(400-600) > M(200-400); p=5E-8M(600-800) > M(400-600); p<1E-10M(800-1001) < M(600-800); p<1E-10

Error bars = ±1 SEM

Lymphomas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800 1000Age (days)

% p

er 1

00 a

nim

al-d

ays

at r

isk

Age-specific mortality M(t)

Beta model fit to M(t)

Age-specific incidence I(t) (from Sheldon)

M(400-600) > M(200-400); p=0.01M(600-800) > M(400-600); p=0.0001M(800-1001) < M(600-800); p<1E-10

15

ED01 Age-specific Mortality for All Neoplasms Causes of Death vs. Dose

of 2-AAF, With Beta Function Fit.Age-Specific Mortality for Dose = 0:

Death Caused by Neoplasms

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000

Age (days)

Per

cen

t of

Pop

ula

tio

n a

t R

isk

(p

er 1

00

day

s)

Age-specific mortality %Beta model fit

M(400-600) > M(200-400); p=2E-5M(600-800) > M(400-600); p=1E-5M(800-1001) < M(600-800); p=4E-6

Error bars = ±1 SEM

Age-Specific Mortality for Dose = 30 ppm: Death Caused by Neoplasms

0.0

0.5

1.0

1.5

2.0

2.5

0 200 400 600 800 1000

Age (days)

Per

cen

t of

Pop

ula

tion

at

Ris

k (

per

100

day

s)

Animals Dead

Beta model fit for dose=0

M(400-600) > M(200-400); p=4E-9M(600-800) > M(400-600); p<1E-10M(800-900) < M(600-800); p=0.04

16

ED01 Age-specific Mortality for All Neoplasms Causes of Death vs. Dose

of 2-AAF, With Beta Function Fit.Age-Specific Mortality for Dose = 35 ppm:

Death Caused by Neoplasms

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800 1000

Age (days)

Per

cen

t of

Pop

ula

tion

at

Ris

k (

per

100

da

ys)

Animals Dead

Beta model fit for dose=0

M(400-600) > M(200-400); p=0.006M(600-800) > M(400-600); p<1E-10M(800-900) < M(600-800); p=0.02

Error bars = ±1 SEM

Age-Specific Mortality for Dose = 45 ppm: Death Caused by Neoplasms

0.0

0.5

1.0

1.5

2.0

2.5

0 200 400 600 800 1000

Age (days)

Perc

en

t of

Pop

ula

tion

at

Ris

k (

per

100

days

Animals Dead

Beta model fit for Dose=0

M(400-600) > M(200-400); p=0.0001M(600-800) > M(400-600); p=2E-9M(800-1001) < M(600-800); p=9E-6

17

ED01 Age-specific Mortality for All Neoplasms Causes of Death vs. Dose

of 2-AAF, With Beta Function Fit.

Age-Specific Mortality for Dose = 60 ppm: Death or Moribidity Caused by Neoplasms

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000

Age (days)

Per

cen

t of

Pop

ula

tion

at

Ris

k (

per

100

days)

Animals Dead or MoribundBeta model fit for dose=0

M(400-600) > M(200-400); p<1E-10M(600-800) > M(400-600); p<1E-10M(800-900) < M(600-800); p=2E-8

Error bars = ±1 SEM

Age-Specific Mortality for Dose = 75 ppm: Death Caused by Neoplasms

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Age (days)

Per

cen

t o

f P

op

ula

tion

at

Ris

k (

per

10

0

da

ys

Animals Dead

Beta model fit for dose=0

M(400-600) > M(200-400); p=0.0006M(600-800) > M(400-600); p=2E-7M(800-1001) > M(600-800); p=0.01

18

ED01 Age-specific Mortality for All Neoplasms Causes of Death vs. Dose

of 2-AAF, With Beta Function Fit.

Age-Specific Mortality for Dose = 100 ppm: Death Caused by Neoplasms

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

Age (days)

Per

cen

t o

f P

op

ula

tio

n a

t R

isk

(p

er 1

00

da

ys)

Animals Dead

Beta model fit for dose=0

M(400-600) > M(200-400); p=0.0002M(600-800) > M(400-600); p=9E-5M(800-900) > M(600-800); p=0.02M(900-1001) < M(800-900); p=0.15

Error bars = ±1 SEM

Age-Specific Mortality for Dose = 150: Death Caused by Neoplasms

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000

Age (days)

Per

cen

t o

f P

op

ula

tio

n a

t R

isk

(p

er 1

00

da

ys)

Animals Dead

Beta model fit for dose=0

M(400-600) > M(200-400); p=7E-5M(600-800) > M(400-600); p=2E-5M(800-1001) > M(600-800); p=0.17

19

Cell Replicative Senescence As Biological Cause

of the Turnover

Widely accepted characteristics of replicative senescence:

1. That cellular replicative capacity is limited has been known for 40 years.

2. Has been observed in vitro and in vivo for many cell types, both animal and human.

3. Is closely related to the ageing process.

4. Is a dominant phenotype when fused with immortal tumor-derived cells.

5. Considered to be an important anti-tumor mechanism.

6. Cells senesce by fraction of population, rather than all at the same time.

7. Senescent cells function normally, but are unable to repair or renew themselves.

20

Cell Replicative Senescence: Cells Retaining

Proliferative Ability Decrease With Number of Cell Divisions.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

In v itro populat ion doublings

Per

cen

t of

cel

ls a

ble

to

pro

life

rate

Normal f ibroblasts (Hart et al1976)

U V irradiated f ibro blasts (Hart etal 1976)

Normal fibroblasts (Wynford-Thomas 1999)

AGO7086A (Thomas e t al 1997)

DD1 (Thomas et al 1997)

21

Cell Replicative Senescence: Increase in Age Decreases

the Number of Cells With Replicative Capacity.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

Donor age (years)

Rep

lica

tiv

e ca

pa

city

(n

orm

aliz

ed t

o h

igh

est

va

lue

mea

sure

d)

Vascular smooth musclecells (Ruiz-Torres et al1999)

Adrenocortical cells (Yanget al 2001)

22

Cell Replicative Senescence:

Beta Model

Cells In Vitro Age

Non

-sen

esce

nt

cell

s

Cells In Vivo Age

Rem

ain

ing

poo

l of

cell

s ab

le t

o ca

use

can

cer

Cells in “Cancer Pool” = No(1-t)

= (lifespan)-1

I(t) = (t)k-1(1-t)

23

Influence of Senescence Rate on Age-Specific Cancer

Incidence in Mice.

Age-Specific Cancer M ortality: Beta and MVK/s Models of

Senescence Effects

0

5

10

15

20

25

0 200 400 600 800 1000

Age (days)

Age

sp

ecif

ic m

or

tali

ty (

perc

en

t o

f p

opu

lati

on

at

risk

per

10

0 d

ay

s)

ED01 mice contro ls (P om pei e t al 2001)

B eta model

MVK /s model

Normal senescen ce

Norm al senescence x 1.21

Normal senescence x 0.5

24

Probability of Tumors in p53 Altered Mice Compared to Beta and MVK-s Model Predictions.

Effect of Senescence on Tumor Probability in Mice

0

10

20

30

40

50

60

70

80

90

100

p53+/+(Tyneret al

2002)

Beta MVK-s p53+/m(Tyneret al

2002)

Beta MVK-s p53+/-(Tyneret al

2002)

Beta MVK-s

Per

cen

t of

mic

e w

ith

tu

mor

s

Normal senescence

Enhanced senescence

Reduced senescence

25

Age-Specific Cancer Mortality for Female CBA Mice Dosed with

Melatonin vs. Controls.

Effect of Melatonin Dose on Cancer Mortality

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000

Average age at death (days)

Ag

e-s

pec

ific

mo

rtal

ity

(pe

r 90

an

ima

l-d

ays

at r

isk

)

Controls

Melatonin Dosed

Data from Anisimov et al 2001.

26

Influence of Senescence on

Cancer Mortality and Lifetime

Mice Cancer Mortality and Lifetime vs. Senescence

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Normalized senescence

Can

cer

mor

atlit

y or

rel

ativ

e lif

etim

e

p53+/+ mice cancer mortality

p53+/m mice cancer mortality

p53+/- mice cancer mortality

p53-/- mice cancer mortality

p53+/+ mice lifetime

p53+/m mice lifetime

p53+/- mice lifetime

p53-/- mice lifetime

Melatonin controls cancer mortality

Melatonin dosed cancer mortality

Melatonin controls lifetime

Melatonin dosed lifetime

ED01 mice cancer mortality

Human cancer mortality

Beta model of cancer mortality

Beta model of lifetime

------- Curve fit for lifetime data

27

Senescence and Dietary Restriction

Liver Tumors vs. Weight for Female Control B6C3F1 Mice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70Weight (g)

Liv

er t

um

or r

ate

Haseman 1991

Seilkop 1995

Beta-senescence model

28

Senescence and Dietary Restriction

Rodent Longevity vs. Deitary Restriction

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.4 0.6 0.8 1 1.2

Caloric intake relative to ad libitum

Rel

ativ

e L

onge

vity

Weindruch et al 1986Weindruch et al 1982Masoro et al 1982Fernandes et al 1976Sheldon et al 1995Ad libitumBeta-senescence model

29

Conclusions

1. Cancer incidence turnover likely caused by cellular senescence

2. Reducing senescence might be an attractive intervention to prolong life, even if cancer is increased.

3. Dietary restriction might be an example of interventions that both reduce senescence and reduce carcinogenesis. There may be others.