Download - The Role Of Globular Clusters During ReionizationGlobular Cluster Primer Dense stellar systems Consist of 104 - 106 stars Very, very, very old ~ 13 Gyrs Located in bulge and halo Milky

Transcript
  • The Role Of Globular Clusters During Reionization

    Brendan GriffenMKI Level 5, Room 582K

    Friday, 26 April 13

  • Collaboration

    Michael Drinkwater

    Ilian Iliev

    PeterThomas

    GarreltMellema

    Brendan Griffen

    University of Queensland University of Sussex

    University of Stockholm

    Friday, 26 April 13

  • Outline• What do we know about globular clusters and their formation?

    • What is their relationship to reionization?

    • Previous numerical work

    Background

    My Work

    Summary

    • Identify formation sites & modelling them as sources

    • Take home message: Globular clusters are important contributors!

    • Extensions: dynamical disruption

    Brendan GriffenFriday, 26 April 13

  • Background

    Friday, 26 April 13

  • Globular Cluster PrimerDense stellar systems

    Consist of 104 - 106 stars

    Very, very, very old ~ 13 Gyrs

    Located in bulge and halo

    Milky Way N ~160

    BulgeDisk This room

    10 kpc

    Brendan GriffenFriday, 26 April 13

  • Globular Cluster PrimerTwo populations: metal-rich & metal-poor

    Brendan Griffen

    -1.59 -0.59

    Friday, 26 April 13

  • Formation ScenariosMajor Mergers

    Brendan Griffen

    Antennae Galaxies

    Friday, 26 April 13

  • Formation ScenariosHierarchical

    Brendan Griffen

    t = 13 Gyrs

    t = 0

    Friday, 26 April 13

  • Relation To ReionizationMajority formed between ~10-14 Gyrs ago

    Brendan Griffen

    Forbes & Bridges (2010)

    Friday, 26 April 13

  • Relation To ReionizationAge consistent with reionization epoch

    Barkana & Loeb (2007)

    Brendan Griffen

    Metal Poor GC

    Formation

    Friday, 26 April 13

  • Relation To ReionizationEvidence that metal-poor GCs trace reionization epoch

    Brendan GriffenSpitler et al. (2012)

    “Num

    ber

    Den

    sity

    Friday, 26 April 13

  • Relation To ReionizationPotential to produce high numbers of ionising photons

    Brendan Griffen

    Schaerer & Charbonnel (2011)

    Friday, 26 April 13

  • Previous WorkModelled formation but not contribution to reionization

    Brendan Griffen

    Bekki et al. (2003, 2008) Kravtsov & Gnedin (2005)

    ~20 particles per GCsensitive to halo finder

    ~100 particles per GConly evolved to z = 3

    Friday, 26 April 13

  • My Work

    Friday, 26 April 13

  • The Aquarius Suite~2000 particles per cluster

    Brendan GriffenFriday, 26 April 13

  • Identifying Formation SitesCooling is most efficient at T~104 K

    Brendan Griffen

    Coo

    ling

    Rat

    e [e

    rg c

    m^3

    /sec

    ]

    Temperature [K]Loeb (2010)

    atomic cooling

    molecular cooling

    Friday, 26 April 13

  • Identifying Formation Sites

    Brendan Griffen

    Assuming dark matter is in equilibrium with the gas, we can use the velocity dispersion to infer a temperature.

    We tag all dark matter objects that go above this velocity dispersion threshold.

    Friday, 26 April 13

  • The Radiative Transfer Code

    Brendan GriffenFriday, 26 April 13

  • The Radiative Transfer CodeWell tested against other codes

    Brendan GriffenFriday, 26 April 13

  • The Radiative Transfer CodeRay tracing naturally treats inhomogeneities correctly

    Brendan GriffenFriday, 26 April 13

  • Range Of EfficienciesPhysically motivated from literature

    Brendan Griffen

    --Tumlinson et al. (2004)--Baumgardt & Makino (2007)--Yajima et al. (2011) Ferrara & Loeb (2011) Wise & Cen (2009)

    escape fraction

    # photons per baryon

    star formation efficiency

    Friday, 26 April 13

  • Photon-Richest

    Photon-Poorest

    Friday, 26 April 13

  • Results In-homgeneous Ionization

    Brendan Griffen

    0246810121416182022240

    5

    10

    15

    20

    25

    30

    35

    40

    Nu

    mb

    er

    redshift

    M1_512_ph150 M1_512_ph250 M1_512_ph500 M1_512_ph700 M1_512_ph1000 M1_512_ph5000 potential sources

    60% suppression

    85% suppression

    Griffen+ (2013)

    Friday, 26 April 13

  • Resultsz = 0 radial distributions

    Brendan Griffen

    0 20 40 60 80 100 120 1400

    20

    40

    60

    80

    100

    120

    Nu

    mb

    er

    R/kpc

    M1_512_ph150 M1_512_ph250 M1_512_ph500 M1_512_ph700 M1_512_ph1000 M1_512_ph5000 truncated at z = 13 Milky Way GCs [Fe/H] < −1

    Shallow when compared to Milky Way metal-poor GC distributionGriffen+ (2013)

    Friday, 26 April 13

  • ResultsContribution To Local Reionization

    Brendan Griffen

    150250

    500700

    10005000 1

    23

    45

    6

    0

    0.25

    0.5

    0.75

    1

    box width

    [h−1 Mpc]

    z = 13

    xv

    150250

    500700

    10005000 1

    23

    45

    6

    0

    0.25

    0.5

    0.75

    1

    box width

    [h−1 Mpc]fγ

    xm

    150250

    500700

    10005000 1

    23

    45

    6

    0

    0.25

    0.5

    0.75

    1

    box width

    [h−1 Mpc]

    z = 10

    xv

    150250

    500700

    10005000 1

    23

    45

    6

    0

    0.25

    0.5

    0.75

    1

    box width

    [h−1 Mpc]fγ

    xm

    150250

    500700

    10005000 1

    23

    45

    6

    0

    0.25

    0.5

    0.75

    1

    box width

    [h−1 Mpc]

    z = 7

    xv

    150250

    500700

    10005000 1

    23

    45

    6

    0

    0.25

    0.5

    0.75

    1

    box width

    [h−1 Mpc]fγ

    xm

    Griffen+ (2013)

    Friday, 26 April 13

  • Results Contribution To Local Reionization (within 23 h-3 Mpc3)

    Brendan Griffen

    05101520250

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    redshift

    xv

    M1_512_ph150 M1_512_ph250 M1_512_ph500 M1_512_ph700 M1_512_ph1000 M1_512_ph5000

    05101520250

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    redshift

    xm

    M1_512_ph150 M1_512_ph250 M1_512_ph500 M1_512_ph700 M1_512_ph1000 M1_512_ph5000

    Mas

    s Fr

    actio

    n

    Volu

    me

    Frac

    tion

    Griffen+ (2013)

    Friday, 26 April 13

  • Model Extensions Dynamical Disruption

    Brendan GriffenFriday, 26 April 13

  • Model Extensions Dynamical Disruption

    galaxy rotation velocity

    galactocentric radius

    scaling parameter orbital eccentricity

    mass of cluster

    Brendan Griffen

    Baumgardt & Makino (2003)

    Friday, 26 April 13

  • Results The effect of disruption

    Brendan Griffen

    60% of all primordial GCs are destroyed through dynamical disruption alone

    0 20 40 60 80 100 120 1400

    20

    40

    60

    80

    100

    120

    Nu

    mb

    er

    R/kpc0 20 40 60 80 100 120 140

    0

    0.2

    0.4

    0.6

    0.8

    1

    f (<

    R)

    R/kpc

    M1_512_ph150 surv. M1_512_ph150 total M1_512_ph250 surv. M1_512_ph250 total M1_512_ph500 surv. M1_512_ph500 total M1_512_ph700 surv. M1_512_ph700 total M1_512_ph1000 surv. M1_512_ph1000 total M1_512_ph5000 surv. M1_512_ph5000 total Milky Way GCs [Fe/H] < −1

    Griffen+ (2013)

    Friday, 26 April 13

  • Future Work

    Brendan Griffen

    Spitler et al. (2012)

    Millennium-II simulation

    “Num

    ber

    Den

    sity

    Friday, 26 April 13

  • CaterPillar ProjectBeing carried out on level 5/6

    Brendan Griffen

    Team: Greg Dooley

    Alex Ji Phillip ZukinAnna Frebel

    Ed Bertschinger

    Status:Parent simulation complete

    Selecting 60+ Milky Way sized halos

    First halo at high resolutionto be completed soon

    Avalanche of data to follow...

    100

    Mpc

    /hPa

    rent

    Sim

    ulat

    ion

    Friday, 26 April 13

  • Brendan Griffen

    • Metal-poor globular clusters formed within small dark matter halos

    • Age, stellar properties make them ideal candidates for reionization.

    • Combined high-resolution dark matter simulation with radiative transfer.

    Model

    Take Home Message

    • Metal-poor globular clusters are candidate contributors to reionization.

    • MPGCs contributed ~50% of ionised mass and volume by z = 10.

    • Improve: test against a variety environments + include baryons.

    • Characterising their contributions is within reach of JWST.

    Summary

    Friday, 26 April 13