Download - The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Transcript
Page 1: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

The approach of nanomagnets to thermal equilibrium

F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García-Palacios, V. González, and L. M. García

Instituto de Ciencia de Materiales de Aragón, Zaragoza, Spain

F. Petroff, V. Cross, and H. Jaffrès

Unité Mixte de Physique, CNRS-Thales, Orsay, France

F. L. Mettes, M. Evangelisti, and L. J. de Jongh

Kamerlingh Onnes Laboratory, Leiden University, The Netherlands

Kyoto 2003

Page 2: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

I Single nanomagnet: Anisotropy and its microscopic origin

U = KV

“up” “down”

III Material: Dipolar interactions

II Spin-bath interactions: phonons, electrons, decoherence

Thermal bathT

coherence

Spin-lattice relaxation

Page 3: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Outline of the talk

• Magnetic relaxation in Co clusters

Size-dependent anisotropy and orbital magnetism

Influence of a Cu layer on K and L

Dipolar interactions and magnetic relaxation

• Spin-lattice relaxation of single-molecule magnets

Non-linear susceptibility in the thermally activated regime

Spin-lattice relaxation in the quantum regime

Long range dipolar order

Page 4: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Surface anisotropy of Co clusters prepared by sequential deposition (Orsay)

• No trace of oxidation

• fcc crystal structure

• Good control of the average diameter between 0.7 and 6 nm

Co Al2O3

Si

tCo =0.1 - 1 nm

tAl2O3 = 3 nm

tCo =0.1 - 1 nm

Page 5: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

• Size distribution approximately independent of D

•Clusters of 30 to 4000 atoms

Co55

Co147

Co561

Co2057

Page 6: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Activation energy: effective anisotropy

)(),(" 2 bbeqB UfUTTk

36/ D

DUK

M. I. Shliomis and V. I. Stepanov, Adv. Chem. Phys. 87, 1 (1994)

D

KKK s

bulk

6

bulk

Page 7: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

e-

K and L sensitive to the matrix (metallic or insulating) surrounding the cluster

Surface anisotropy and orbital magnetic moment

L S

(mL – mL||)L

• K S-O LS

Electron confinement

enhanced L

Surface

anisotropic L

P. Bruno, Phys. Rev. B 39, 865 (1989)

Page 8: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

D = 2.6 nm

XMCD study of the orbital moment

Sum rules mL/mS

• Circularly polarized X-rays• L2,3 edges of Co• Fluorescence and total electron yield

B < 5 T

+

-

+

-

Page 9: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Bulk Co: mL/mS = 0.097

mL mL A mS mS D=

bulk

+

The orbital magnetic moment increases as D decreases

In bulk L = 0.15 B at the surface L 0.39 B

Lsurface

Lbulk

Page 10: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

K/L at the surface ~ 10(K/L) in bulk

L becomes much more anisotropic at the surface

(mL – mL||)

LK

Page 11: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Effect of a metallic layer (Cu)

1.5 nm

Clusters covered by a thin layer of Cu

Samples with and without Cu show approximately the same equilibrium magnetic response

Same cluster size distribution

Page 12: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

but larger blocking temperature

and larger orbital magnetic moment

Page 13: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

CoCu

e-

L becomes larger at the Co/Cu interface

Agrees with experiments on Co/Cu layers (M.Tischer et al., Phys. Rev. Lett. (1995))

Modified DOS by hibridization with the Cu conduction band? (Wang et al. J.

Mag. Mag. Mater., 237 (1994))

Page 14: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Interactions and magnetic relaxation

Self organized growth of the clusters in 3D

Babonneau et al., Appl. Phys. Lett. 76, 2892 (2000)

Control over dipolar interactions

• Number of layers N

• Interlayer separation

Page 15: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Series of samples: N = 1, 2, 3, ..., 20 prepared under identical conditions

The size distribution is almost independent of N

Page 16: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Experimental results

The average U increases

one layer 30 layers

Page 17: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

The blocking temperature increases almost linearly

with the number of nearest neighbours

F. Luis et al., Phys. Rev. Lett. 88, 217205 (2002)U = Ks S + A N

Page 18: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

z

1 2

3

1

32

Theoretical model Inspired in Dormann modelJ.L. Dormann et al., J. Phys. C 21, 2015 (1988)

• dominated by largest particles

• Nearest neighbors fluctuate rapidly

• Interaction energy is continuously minimized

= 0 expU + Edip

kBT

Page 19: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.
Page 20: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

• The anisotropy is two orders of magnitude larger than in bulk and it is mainly determined by the atoms located at the surface: U = KsS

• The enhanced K is related to an increase of the orbital moment L at the surface

• L at the surface is much more anisotropic than in bulk (K/L)surface 10 (K/L)bulk

• K and L can be enhanced by embedding the clusters in a metallic (Cu) matrix: potential for applications

• Dipolar interactions slow-down the relaxation process:

U = KsS + ANnn

Conclusions (Co clusters)

Page 21: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Single-molecule magnetsD. Gatteschi et al., Science 265, 1054 (1994)

• Large intramolecular exchange interactions Net spin S

• Intermediate situation between paramagnetic atoms and magnetic nanoparticles

Mn12

Quantum world Classical world

Page 22: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

ZFS7 – 14 K

Anisotropy

Hsingle = -DSz2 – E(Sx

2 – Sy2)

Giant spin model: anisotropy and quantum tunnelling

Tunnelling

U

z

S

Page 23: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Slow relaxation towards thermal equilibrium

Thermal bath(lattice)

Phonon-induced transitions between levels

• Fast intrawell transitions 10-7 s Cm0

Fe8

• Slow interwell transitions: >> Cmeq – Cm

0

No equilibrium when > eCm = Cm0 e- / + Cm

eq (1 – e-/e e

EquilibriumNo

Equilibrium

H = Hsingle + Hspin-lattice

Page 24: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Dipole-dipole interactions

J. F. Fernández and J. Alonso, Phys. Rev. B 62, 53 (2000)

• Large molecular spins

• Super-exchange interactions can be neglected

• Fast spin-lattice relaxation (low anisotropy)

D 0.01 K

Mn6

S = 12

Tc ~ 0.1 – 0.5 K

long-range order

(Bdip)2,1

H = Hsingle + Hspin-lattice + Hdipolar

Page 25: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Dipolar ferromagnet Tc = 0.17 K

A. Morello, et al. Phys. Rev. Lett. 90, 017206 (2002).

Equilibrium experiments down to very low T

T < Tc T > Tc

Page 26: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

UkBT

= 0 exp

Resonant tunneling via excited states (T > 1 K)

Multilevel Orbach process (Pauli Master equation)

<<

>

Tunnelling blocked by dipolar and hyperfine stray magnetic fields

U e

TB

UkBln(e/0)

TB =

F. Luis, J. Bartolomé, and J. F. Fernández, Phys. Rev. B 57, 505 (1998)

Page 27: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Non-linear susceptibility of Mn12 clusters

M = 0H – 3 H3+...

Gives information on

Equilibrium: magnetic anisotropy

Non-equilibrium: spin-bath interaction

damping

2/L

0

2/L

0J. García-Palacios and P. Svedlindh, Phys. Rev. Lett. 85, 3724 (2000)

Page 28: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

• Third harmonic: (3)

• Second order coefficient in

() = () - 3 () H2 + ...

Experimental determination of 3

There are two possibilities

• hac sufficiently small not to induce any extra nonlinearity

• The same qualitative behavior in the classical limit

Page 29: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

A story of two Mn12 molecular crystals

U = 65 K for both compounds Same anisotropy

0 = 3×10-8 s Mn12 acetate Different spin-lattice interaction

0= 1.5×10-8 s Mn12 2-Cl benzoate (benzoate) 2 (acetate) < 10-3

Page 30: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Results Calculated

•Weak dependence on 0

•Opposite signs!!!

Experimental

?

Page 31: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Classical: 2/ H2 < 0

Quantum tunnelling: 2/H2 > 0

The classical 3 should be recovered at high fields

> 0.1 coherence < 0

Suitable method to ascertain if relaxation takes place via QT

Explanation: quantum non-linearity

Page 32: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Application to more complex systems: natural ferritin

D = 7 nm

S 100

Tejada et al (1997): QT? Yes

Mamiya et al (2002): QT? No

Classical relaxation near TB

Page 33: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Spin-lattice relaxation in the quantum regime (T < 1 K)

>> kBT?

×

Tunnelling induced by a fluctuating bias (Prokof’ev and Stamp, Phys. Rev. Lett. 80, 5794 (1998))

Two-level system

Spin reversal but ...No relaxation of energy

Thermal bath(lattice)

(Fernández and Alonso, Phys. Rev. Lett. 91, 047202 (2003))

Page 34: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Experiments: time-dependent specific heat (Leiden)(spin-lattice relaxation

time )

(“relaxation” or “experimental” time e

Adjustable: 0.1 – 1000 seconds)

C = e/R

Page 35: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Relaxation towards (ordered) equilibrium via quantum tunnelling: Mn4

S = 9/2

U = 14.5 K

H = – DSz2 – E(Sx

2 – Sy2)

R

Symmetry of the cluster

• R = Cl-(OAc)3(dbm)3

= 10-7 K

• R = (O2CC6H4-p-Me)4(dbm)3

= 10-4 K!!

Page 36: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Relaxation rate: time-dependent specific heat: Mn4Cl

• becomes independent of T below 1 K: incoherent tunnelling

• Five order of magnitude faster than predicted for known processes!

Page 37: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Conclusions (single-molecule magnets)

• Quantum tunnelling provides a mechanism for relaxation

to equilibrium for all T:

High T: resonant tunnelling via excited states

Low T: incoherent tunnelling mediated by phonons

and nuclear spins (challenge for theoreticians!)

• Long-range magnetic ordering induced purely by dipolar

interactions: Mn6 (isotropic) and Mn4 (Ising)

• Large quantum non-linear susceptibility

Page 38: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Collaborations:Samples

• Fe8

J. Tejada, Departamento de Física Fonamental, Universitat de Barcelona, Spain

• Mn4, Mn6

G. Aromí, Universidad de Barcelona, SpainG. Christou, N. Aliaga, University of Florida, USA

• Mn12 D. Gatteschi, Department of Chemistry, University of Florence, Italy

• 57Fe8 R. Sessoli, Department of Chemistry, University of Florence, Italy

Theory

J. F. Fernández, Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Spain

Page 39: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Arigato

Thank you!

¡Gracias!

Page 40: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Tunnelling via lower lying states?

B

Leaves the symmetry intact

Increases for all ±m doublets

Tranverse magnetic field

m = ±10

m = ±9

m = ±8

m = ±7

m = ±6

Page 41: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

TB = U/kBln(t/0) decreases

No blocking at all when B > 1.7 T ! tunnelling via the ground state

Page 42: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Direct measurement of the tunnel splitting: Fe8

kBT

F. Luis, F. L. Mettes, J. Tejada, D. Gatteschi, and L. J. de Jongh, Phys. Rev. Lett. 85, 4377 (2000)

Page 43: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

tun 0.5 ns

1 ms (phonons)

B = 0 () classical states

m = -10 or m = +10

A mesoscopic Schrödinger cat

B = 3 T () Quantum superpositions

+

-

Page 44: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Common pehnomenon at the atomic scale

• Protons in hydrogen bonds• Ammonium molecule

But hard to conciliate with our macroscopic intuition

Possible technological applications: quantum computing

Page 45: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

The role of nuclear spin bath

• Quantum tunnelling of the electronic spin is forbidden by destructive interference when S = 9/2 (Loss et al., von Delft et al., 1992) at zero field

= 0

• Hyperfine interactions with nuclear spins can break the degeneracy

H = – DSz2 – E(Sx

2 – Sy2) + Ahf (IxSx + IySy + IzSz)

I S

For Mn nuclei I = 5/2

0Tunnelling

Page 46: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

Experimental study: giant isotope effect in Fe8

Spin of Fe nuclei:

• Natural I = 0

• 57Fe I = 1/2

Page 47: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

t=0

II

I

l3

l2

l1

t <

t >

m

IV

III

l4

t 0

t > /t

m

F. Luis, J. Bartolomé, and J. F. Fernández, Phys. Rev. B 57, 505 (1998)

coherence << 0 > 0.1

Page 48: The approach of nanomagnets to thermal equilibrium F. Luis, F. Bartolomé, J. Bartolomé, J. Stankiewicz, J. L. García- Palacios, V. González, and L. M.

TB (20 s) < TB(1 s)