Download - Stochastic Analysis of Chemical Reaction Networks using ...

Transcript

Stochastic Analysis of Chemical Reaction Networks using Linear Noise

Approximation

Luca Cardell i↑1,2     , Marta Kwiatkowsk π‘Žβ†‘1 , Luca Laurentπ’Šβ†‘πŸβŸ ↑1   Department of Computer Science, University of Oxford

↑2   Microsoft Research

1

β€’β€― Motivationβ€’β€― Backgroundβ€’β€― Linear Noise Approximation (LNA)β€’β€― Stochastic Evolution Logic (SEL)β€’β€― Experimental Results

Summary

2

Motivation Γ˜β€―Biochemical systems are generally analysed considering

deterministic models. However, deterministic models are accurate only when the molecular population is large

Γ˜β€―When the interacting entities are in low numbers there is a

need of considering a stochastic model

Γ˜β€―Existing methods for analysis of discrete state space stochastic processes are not scalable and highly dependent on the initial number of molecules

β€’β€― Question: Can we derive a formal method to analyse the stochastic semantics of biochemical systems that is scalable and independent of the initial number of molecules?

3

Chemical Reaction Networks (CRNs)

β€’β€― A CRN π‘ͺ=(𝚲,𝑹) is a pair of sets

β€’β€― Ξ› is a finite set of species { πœ†β†“1 ,   πœ†β†“2 ,…, πœ†β†“|Ξ›| }  

β€’β€― 𝑅 is a finite set of reactions {  πœβ†“1 ,   πœβ†“2 ,…, πœβ†“|𝑅| }  β€’β€― 𝑒.𝑔.   πœβ†“π‘–βŸ  :   πœ†β†“1 + πœ†β†“2    β†’β†‘π‘˜βŸ     πœ†β†“3βŸβ€’β€― π‘˜ is the rate constant

Γ˜β€―A configuration or state of the system, π‘₯∈ 𝑁↓↑|Ξ›| , is given by the number of molecules of each species in that configuration

4

Γ˜β€―Set of autonomous polynomial ODEs:𝑑Φ/π‘‘π‘‘βŸ=F(t)Ξ¦(𝑑)                                                                              Ξ¦(0)=   π‘₯↓0 /π‘βŸ β€’β€― 𝑁=π‘‰π‘œπ‘™π‘’π‘šπ‘’β‹… π‘β†“π΄βŸ is the Volumetric factor of the

system

β€’β€― Ξ¦(𝑑)∈ 𝑅↑|Ξ›|    represents the species concentration at time t

β€’β€― 𝐹(𝑑) is determined by mass action kineticsβ€’β€― Number of differential equations equals number of speciesβ€’β€― Valid only for high number of moleculesβ€’β€― Does not take into account the stochastic nature of

molecular interactions 5

Deterministic Semantics of CRNs

β€’β€― It is a continous time Markov process ( π‘‹β†‘π‘βŸ(𝑑),𝑑β‰₯0) with discrete state space 𝑆 and infinitesimal generator matrix 𝑄 determined by the reactions

β€’β€― The transient evoloution of π‘‹β†‘π‘βŸ  is described by the Chemical Master Equation (CME)oβ€―Assuming 𝑃(π‘₯,𝑑)=π‘ƒπ‘Ÿπ‘œπ‘{π‘‹β†‘π‘βŸ(𝑑)=π‘₯  |   π‘‹β†‘π‘βŸ(0)= π‘₯↓0 }

then the CME can be written as

𝑑𝑃(π‘₯,𝑑)/π‘‘π‘‘βŸ=𝑃(π‘₯,𝑑)𝑄

6

Stochastic Semantics of CRNs

β€’β€― One differential equation in the CME for any reachable stateβ€’β€― S highly dependent on the initial number of moleculesβ€’β€― Set of reachable states can be huge or even infinite

β€’β€― Solution: USE LINEAR NOISE APPROXIMATION !

7

State Space Explosion Problem

Γ˜β€―Not possible to solve the CME for large molecular populations and/or large CRNs

β€’β€― Technique pioneered by Van Kampen in his CME espansion

8

β€’β€― Ξ¦(𝑑) solution of the deterministic semanticsβ€’β€― 𝑍(𝑑) is a Gaussian Process independent of 𝑁

oβ€― 𝐸[𝑍(𝑑)]=0    π‘“π‘œπ‘Ÿ    π‘‘β‰₯0oβ€― 𝑑𝐢[𝑍(𝑑)]/π‘‘π‘‘βŸ= π½β†“πΉβŸ(Ξ¦(𝑑))𝐢[𝑍(𝑑)]+𝐢[𝑍(𝑑)]π½β†“πΉβ†‘π‘‡βŸ(Ξ¦(𝑑))+𝐺(Ξ¦(𝑑))β€’β€―  π½β†“πΉβŸ(Ξ¦(t)) Jacobian of 𝐹(Ξ¦(𝑑)) β€’β€― 𝐺= 1/π‘βŸβˆ‘πœβˆˆπ‘…β†‘β–’πœβ†“πœβŸπœβ†“πœβ†‘π‘‡βŸπ›Όβ†“πœβŸβŸ

Linear Noise Approximation (LNA)

π‘‹β†‘π‘βŸ(𝑑)β‰ˆπ‘Œβ†‘π‘βŸ(𝑑)=𝑁Φ(𝑑)+βˆšπ‘βŸπ‘(𝑑)

β€’β€― For any CRN, assuming mass action kinetics, the LNA is always accurate at least for a limited time (it is enough to increase 𝑁)

β€’β€― Independence of the initial number of moleculesoβ€― The number of differential equations depends only on the

number of species

β€’β€― Number of differential equations quadratic in the number of species

β€’β€― Still good approximation for a large class of CRNs even for quite small molecular populations oβ€― Not able to handle multinomial distributions

9

Linear Noise Approximation (LNA)

LNA Also Known as Gaussian Approximation

β€’β€― 𝐡∈ 𝑁↓↑|Ξ›| , the linear combination of species π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑) is still Gaussian

oβ€― 𝐸[π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑)]= π΅β†‘π‘‡βŸπΈ[π‘Œβ†‘π‘βŸ(𝑑)]=𝑁(𝐡↑T Φ(𝑑))

oβ€― 𝐢[π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑)]=𝐡𝐢[π‘Œβ†‘π‘βŸ(𝑑)]π΅β†‘π‘‡βŸ=𝐡𝐢[𝑍(𝑑)]π΅β†‘π‘‡βŸ

β€’β€― Probability is calculated by solving Gaussian integrals

β€’β€― 𝑍(𝑑)  is a Gaussian process

Γ˜β€― π‘Œβ†‘π‘βŸ(𝑑)=𝑁Φ(𝑑)+βˆšπ‘βŸπ‘(𝑑) is a Gaussian process

10

β€’β€― 𝑄={  π‘ π‘’𝑝𝑉,  π‘–𝑛𝑓𝑉,𝑠𝑒𝑝𝐸,𝑖𝑛𝑓𝐸} β€’β€― 𝐼 set of closed disjoint intervals β€’β€― 𝐡∈ 𝑍↓β‰₯0  β†‘|Ξ›| 

11

Stochastic Evolution Logic (SEL)

Γ˜β€― π‘ƒβ†“βˆΌπ‘βŸ[𝐡,𝐼  ]↓[𝑑↓1 , 𝑑↓2 ]    : probabilistic operator

Γ˜β€― 𝑠𝑒𝑝𝑉/π‘–π‘›π‘“π‘‰β†“βˆΌπ‘£βŸ[𝐡]↓[𝑑↓1 , 𝑑↓2 ]   : supremum/infimum of variance operators

Γ˜β€― 𝑠𝑒𝑝𝐸/π‘–π‘›π‘“πΈβ†“βˆΌπ‘£βŸ[𝐡]↓[𝑑↓1 , 𝑑↓2 ]   : supremum/infimum of expected value operators

12

Semantics (SEL)

13

Γ˜β€―We use the LNA for a numerical approximate model checking algorithm of SEL

oβ€― π‘‹β†‘π‘βŸ is approximated by the Gaussian Process π‘Œβ†‘π‘βŸ

oβ€― The probability that π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ is within the interval [𝑙,π‘Ÿ] at time t is:

βˆ«π‘™β†‘π‘Ÿβ–’π‘”π‘₯ 𝐸[π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑)],𝐢[π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑)]βŸπ‘‘π‘‘βŸ where 𝑔(π‘₯|𝐸,𝐢) is the Gaussian distribution with

expected value 𝐸  and variance 𝐢.

oβ€― 𝐸[π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑)] and C[π΅β†‘π‘‡βŸπ‘Œβ†‘π‘βŸ(𝑑)] are obtained by solving the LNA for the given initial condition

Approximate Model Checking

Property to check:

Species = {𝐿1,𝐿1𝑝,𝐿2,𝐿2𝑝,𝐿3,𝐿3𝑝,𝐡} πœβ†“1 :  πΏ1+𝐡   β†’β†“β†‘π‘˜β†“1  𝐡+𝐿1𝑝 πœβ†“2 :  πΏ1𝑝+𝐿2   β†’β†‘π‘˜β†“2    πΏ1+𝐿2𝑝 πœβ†“3 :  πΏ2𝑝+𝐿3   β†’β†‘π‘˜β†“2    πΏ2+𝐿3𝑝 πœβ†“4 :  πΏ3π‘β†’β†‘π‘˜β†“3    πΏ3

Comparison with standard Uniformization

Initial Condition: x↓0 (𝐿1)= π‘₯↓0 (𝐿2)= π‘₯↓0 (𝐿3)=𝐼𝑛𝑖𝑑;   π‘₯↓0 (𝐡)=3⋅𝐼𝑛𝑖𝑑;             where  πΌπ‘›π‘–𝑑 is a variable with values in 𝑁

14

Phosphorelay Network

β€’β€― CRN composed of more than 50 reactions and species!oβ€― Initial condition such that all species with non zero concentration

have 105 moleculesoβ€― Exploration of state space infeasibleoβ€― Simulations are time consuming for such a biochemical system

𝑠𝑒𝑝𝐸↓=? [#π‘ π‘Ÿπ‘:𝐹𝑅𝑆2]↓[𝑇,𝑇]  𝑠𝑒𝑝𝑉↓=? [#π‘†π‘Ÿπ‘:𝐹𝑅𝑆2]↓[𝑇,𝑇]       For    π‘‡βˆˆ[0,8000]

Comparison of SEL and single stochastic simulation

15

FGF Pathways

β€’β€― We have presented SEL with an approximate model checking algorithm based on the LNA

β€’β€― Our method can be useful for a fast stochastic characterization of biochemical systems or for stochastic analysis of systems too large to be checked with standard techniques.

β€’β€― Increasing the number of molecules the LNA is always a valid model assuming mass action kinetics, but can be accurate even far from the thermodynamic limit for a large class of CRNs

16

Conclusion

β€’β€― Wallace, E. W. J., et al. "Linear noise approximation is valid over limited times for any chemical system that is sufficiently large." IET systems biology 6.4 (2012): 102-115.

β€’β€― Van Kampen, Nicolaas Godfried. Stochastic processes in physics and chemistry. Vol. 1. Elsevier, 1992. e

β€’β€― Gillespie, Daniel T. Deterministic limit of stochastic chemical kinetics. The Journal of Physical Chemistry B 113.6 (2009): 1640-1644.

β€’β€― Luca Cardelli, Marta Kwiatkowska, Luca Laurenti. Stochastic Analysis of Chemical Reaction Networks Using Linear Noise Approximation.  arXiv preprint arXiv:1506.07861 (2015).

17

Some References

THANK YOU!

18