Download - MicroRNA Profiling of Hepatocellular Carcinomas in B6C3F1 Mice Treated with Ginkgo biloba Extract by Gavage for 2 Years

Transcript
Page 1: MicroRNA Profiling of Hepatocellular Carcinomas in B6C3F1 Mice Treated with Ginkgo biloba Extract by Gavage for 2 Years

 

 

Tissue  collec*on  and  miRNA  extrac*on  for  miRNA  array:  Frozen  samples  from  GBE-­‐induced  HCCs,  spontaneous  HCCs  and  vehicle  control  age-­‐matched  normal  livers  from  B6C3F1  mice  from  the  2-­‐year  NTP  bioassay  were  used  for  miRNA  array  analysis  (n=5/group).  miRNA  extracPon  was  performed  using  mirVana  miRNA  IsolaPon  Kit  (Life  technologies,  Carlsbad,  CA)  and  RNA  integrity  was  measured  with  Bioanalyzer  (Agilent  Technologies,  Santa  Clara,  CA). miRNA  array  hybridiza*on  &  data  analysis:  miRNA  expression  analysis  was  conducted  using  Affymetrix  GeneChip®  miRNA  3.0  Array  (Affymetrix,  Santa  Clara,  CA)  following  manufacturer’s  direcPons.  miRNA  expression  data  were  normalized  across  all  samples  using  the  robust  mulParray  analysis  (RMA)  (Guo  et  al.,  2010).  RMA-­‐normalized  data  were  used  for  idenPfying  differenPally  expressed  miRNAs  using  two  pairwise  analyses  comparing  GBE-­‐induced  HCCs  and  spontaneous  HCCs  with  vehicle  control  age-­‐matched  normal  livers  from  B6C3F1  mice.  Using  Ingenuity  Pathway  Analysis  (IPA),  we  have  analyzed  the  differenPally  expressed  miRNAs  together  with  the  corresponding  transcriptomic  data  that  we  have  previously  obtained  from  these  samples  (Hoenerhoff  et  al.,  2013). miRNA  array  data  valida*on:  QuanPtaPve  RT-­‐PCR  (QRT-­‐PCR)  was  used  to  validate  miRNA  array  results.  QRT-­‐PCR  was  performed  using  TaqMan®  MicroRNA  Assay  (Life  technologies,  Carlsbad,  CA)  on  ABI  PRISM  7900HT  Sequence  DetecPon  System  (Applied  Biosystems,  Foster  City,  CA).  snoRNA202  was  used  as  the  endogenous  control  for  normalizaPon  of  miRNA  levels. miRNA  expression  analysis  in  livers  from  90-­‐day  GBE  mouse  study:  miRNA  was  isolated  and  extracted  from  two  20  μm  secPons  of  formalin-­‐fixed,  paraffin-­‐embedded  (FFPE)  livers  from  control  mice  and  from  mice  treated  with  2000  mg/kg  GBE  for  90  days  (n=6/group)  with  RecoverAll™  Total  Nucleic  Acid  IsolaPon  Kit  for  FFPE  (Life  technologies,  Carlsbad,  CA).  QRT-­‐PCR  was  performed  as  described  above.    

 

Ginkgo  biloba  leaf  extract  (GBE)  has  been  used  for  centuries  in  tradiPonal  Chinese  medicine  and  today  is  used  as  an  herbal  supplement  touted  for  improving  neural  funcPon  and  for  its  anPoxidant  and  anPcancer  effects.  Exposure  of  B6C3F1  mice  to  GBE  in  the  2-­‐year  NaPonal  Toxicology  Program  (NTP)  bioassay  resulted  in  a  dose-­‐dependent  increase  in  hepatocellular  carcinomas  (HCC).  We  have  previously  reported  increased  Ctnnb1  mutaPons  and  alteraPons  in  Wnt/Ctnnb1  signaling  in  GBE-­‐induced  HCC  compared  to  spontaneous  HCC  in  vehicle  controls.  MicroRNAs  (miRNAs)  are  small  non-­‐coding  RNAs  that  are  ogen  dysregulated  in  various  diseases  including  cancer.  To  idenPfy  key  miRNAs  that  modulate  GBE-­‐induced  hepatocarcinogenesis,  we  examined  global  miRNA  expression  using  Affymetrix  GeneChip®  miRNA  3.0  arrays  and  two  pairwise  analyses  (n=5/group)  comparing  GBE-­‐induced  HCCs  and  spontaneous  HCCs  with  vehicle  control  age-­‐matched  normal  livers  from  B6C3F1  mice.  Using  a  false  discovery  rate  threshold  of  5%,  we  observed  16  and  3  unique  differenPally  expressed  miRNAs  in  GBE-­‐induced  HCC  and  spontaneous  HCC,  respecPvely.  Ingenuity  Pathway  Analysis  of  the  miRNA  and  mRNA  array  data  from  these  tumors  demonstrated  altered  molecular  pathways  associated  with  hepatocarcinogenesis,  cell  cycle  progression,  cell  migraPon  and  cell  proliferaPon.  AddiPonally,  miRs-­‐31,  145,  329  and  433-­‐3p,  which  were  uniquely  expressed  in  GBE-­‐induced  HCC,  are  known  or  predicted  to  regulate  Wnt/Ctnnb1  signaling.    In  the  miRNA  expression  analysis  in  livers  from  the  90-­‐day  GBE  mouse  study,  miRs-­‐411,  300,  127  and  134  were  upregulated  more  than  double  in  GBE-­‐treated  group  compared  to  vehicle  control  group,  indicaPng  that  these  miRNAs  could  serve  as  potenPal  biomarkers  for  GBE  exposure  or  hepatocellular  carcinogenesis.    

Abstract  

 

It  has  become  increasingly  apparent  that  epigenePc  mechanisms  are  at  play  in  the  mechanisms  of  carcinogenesis.  MicroRNAs  (miRNAs)  have  been  idenPfied  as  a  new  layer  of  gene  regulatory  mechanisms  (Lujambio  and  Lowe,  2012).  The  importance  of  miRNAs  in  cancer  is  highlighted  by  the  observaPon  that  half  of  the  known  aberrant  expressions  of  miRNAs  are  located  in  cancer  associated  genomic  regions  (Wiklund  et  al.,  2010).  On  the  relaPonship  between  miRNAs  and  hepatocellular  carcinoma  (HCC)  in  humans,  several  studies  have  detected  the  aberrant  expression  of  specific  miRNAs  in  malignant  HCC,  compared  to  normal  hepatocyte  (Masaki,  2009).    There  is  widespread  and  unregulated  use  of  GBE  as  a  dietary  supplement  

by  the  American  public,  and  thus  is  a  significant  public  health  concern.  NTP’s  Ginkgo  biloba  leaf  extract  (GBE)  bioassay  has  indicated  that  chronic  GBE  exposure  to  B6C3F1  mouse  resulted  in  a  dose  dependent  increase  in  hepatocarcinogenicity.  Recent  transcriptomic  studies  on  GBE-­‐induced  HCC  indicated  dysregulated  cancer  gene  expression.  In  AddiPon,  increased  Ctnnb1  mutaPons  and  alteraPons  in  Wnt/Ctnnb1  signaling  were  demonstrated  in  GBE-­‐induced  HCC  compared  to  spontaneous  HCC  (Hoenerhoff  et  al.,  2013).  Determining  the  mechanisms  of  GBE-­‐induced  hepatocarcinogenicity  in  rodents  may  aid  in  assessing  the  health  risks  of  human  exposure.  We  hypothesize  that  genePc  and  epigenePc  pathways  dysregulated  in  GBE-­‐induced  mouse  HCC  may  reflect  key  pathways  altered  in  human  HCC.  The  objecPve  of  this  study  is  to  characterize  the  pamern  of  dysregulated  miRNAs  occurring  in  spontaneous  and  GBE-­‐induced  HCC  and  compare  it  to  the  corresponding  mRNA  alteraPons  in  HCC.

 

In  the  NTP  2-­‐year  mouse  GBE  bioassay,  there  was  a  dose  dependent  increase  in  HCC  (NTP  TR  578,  Table  1).  Using  the  Affymetrix  GeneChip®  miRNA  3.0  Array  plaoorm,  when  compared  to  normal  livers,  there  were  3  and  16  unique  differenPally  expressed  mouse  miRNAs  in  spontaneous  HCC  and  GBE-­‐induced  HCC,  respecPvely,  at  FDR  ≤  0.05  (Figure  1  and  2,  Table  2).  Analyzing  miRNA  and  the  corresponding  mRNA  array  data  in  IPA,  we  have  found  several  differenPally  altered  molecular  pathways  associated  with  HCC  development  in  both  GBE-­‐induced  HCCs  and  spontaneous  HCCs  (Tables  3,  4,  and  5).  Therefore,  these  data  show  that  GBE-­‐induced  HCCs  are  disPnguishable  from  spontaneous  HCC  in  terms  of  their  miRNA  expression  profile.   We  have  previously  reported  increased  Ctnnb1  mutaPons  and  alteraPons  in  

Wnt/Ctnnb1  signaling  in  GBE-­‐induced  HCC  compared  to  spontaneous  HCC  in  vehicle  controls.  In  addiPon,  in  GBE-­‐induced  HCC,  there  was  cytoplasmic  accumulaPon  of  CTNNB1  and  loss  of  normal  CDH1  membrane  immunoreacPvity,  with  accumulaPon  of  the  protein  in  the  cytoplasm  that  suggests  disrupPon  of  CTNNB1/CDH1  complexes  within  adherens  juncPons,  which  is  associated  with  a  more  malignant  phenotype  (Hoenerhoff  et  al.,  2013).  In  this  study,  we  found  4  miRNAs  that  were  uniquely  expressed  in  GBE-­‐induced  HCC  and  known  or  predicted  to  regulate  Wnt/Ctnnb1  signaling  (Table  5).  One  of  them,  miR-­‐31  was  strongly  downregulated  (83-­‐fold  by  QRT-­‐PCR)  in  GBE-­‐induced  HCC  with  no  change  in  spontaneous  HCC  compared  to  normal  livers  and  predicted  to  regulate  Cdk1,  which  was  upregurated  in  GBE  induced  HCC.  CDK1  plays  a  key  role  in  cell  cycle  regulaPon  and  increases  Src  kinase  acPvity  (Roskoski,  2005).  PhosphorylaPon  by  Src  kinase  disrupts  binding  of  CTNNB1/CDH1  and  results  in  loss  of  the  complexes  from  the  cell  surface  (Nelson  and  Nusse,  2004).  Therefore,  miR-­‐31  seems  to  indirectly  modulate  Wnt/Ctnnb1  signaling  in  GBE-­‐induced  HCC.  However,  further  studies  are  needed  to  evaluate  the  effect  of  miR-­‐31  on  Wnt/Ctnnb1  signaling.     In  order  to  determine  if  there  are  any  miRNAs  that  could  potenPally  serve  as  

a  biomarker  for  GBE  exposure  and/or  early  biomarkers  of  hepatocellular  carcinogenesis,  we  have  also  analyzed  the  miRNA  expression  in  livers  from  the  90-­‐day  GBE  mouse  study.  The  expression  of  miRs-­‐411,  300,  127  and  134  more  than  doubled  in  GBE-­‐treated  group  compared  to  vehicle  control  group  (Figure  3).  In  the  90-­‐day  GBE  study,  although  hepatocellular  hypertrophy  and  focal  necrosis  were  found  in  the  livers,  there  were  no  preneoplasPc  hepaPc  foci  (NTP  TR  578,  Table  1).  Since  these  miRNAs  were  uniquely  expressed  in  livers  from  90-­‐day  exposures  and  in  HCCs  from  GBE  exposure  or  arising  spontaneously,  they  could  serve  as  potenPal  biomarkers  for  GBE  exposure  or  hepatocellular  carcinogenesis.  These  results  suggest  that  these  miRNAs  might  be  useful  as  biomarkers  of  exposure  and  apical  endpoints.  However,  further  validaPons  in  prospecPve  studies  are  necessary  in  order  to  validate  these  findings.  In  addiPon,  although  this  QRT-­‐PCR  analysis  was  performed  using  miRNA  extracted  from  secPons  of  FFPE  livers,  all  the  miRNAs  analyzed  were  amplified  with  relaPve  ease,  indicaPng  that  archival  FFPE  Pssues  can  be  leveraged  for  miRNA-­‐based  biomarker  idenPficaPon.   

Introduc.on  

Materials  and  Methods  

Result  and  Discussion    Results  

MicroRNA  Profiling  of  Hepatocellular  Carcinomas  in  B6C3F1  Mice  Treated  with  Ginkgo  biloba  Extract  by  gavage      Yamashita  H1,2,  Pandiri  AR1,3,  Bhusari  S1,  Shockley  KR4,  Peddada  SD4,  Gerrish  KE5,  Rider  CV1,  Hoenerhoff  MJ1,  Sills  RC1.    

1Cellular  &  Molecular  Pathology  Branch,  NaPonal  Toxicology  Program,  NaPonal  InsPtute  of  Environmental  Health  Sciences  (NIEHS),  Research  Triangle  Park,  NC,  United  States,  2Taisho  PharmaceuPcal  Co.  Ltd.,  Saitama,  Japan,  3Experimental  Pathology  Laboratories,  Research  Triangle  Park,  NC,  United  States,  4BiostaPsPcs  Branch,  NIEHS,  Research  Triangle  Park,  NC,  United  States,  5Molecular  Genomics  Core  Laboratory,  NIEHS,  Research  Triangle  Park,  NC,  United  States.    

Table  1.  Incidences  of  select  hepaPc  lesions  in  B6C3F1  mice  treated  with  Ginkgo  biloba  leaf  extract  (GBE)  by  gavage  in  subchronic  (90-­‐day)  and  chronic  (2-­‐year)  NaPonal  Toxicology  Program  studies  (NTP  TR  578).

Figure  1.  (A)  Principal  component  analysis  (PCA)  of  global  miRNA  expression  profiles  demonstrated  nearly  disPnct  clustering  of  normal  liver  (blue),  spontaneous  HCC  (green)  and  GBE-­‐induced  HCC  (red)  samples.  (B)  Using  a  false  discovery  rate  threshold  of  5%,  3  and  16  unique  mouse  miRNAs  were  differenPally  expressed  in  spontaneous  HCC  and  GBE-­‐induced  HCC,  respecPvely.  The  number  in  the  parenthesis  indicates  the  number  of  differenPally  expressed  miRNAs  from  other  species  besides  mice.    

 

We  would  like  to  thank  DNTP  and  DIR,  NIEHS  for  funding  this  project.  We  would  also  like  to  thank  the  NIEHS  Microarray  core  and  the  Histology  core  Laboratory  in  the  Cellular  and  Molecular  Pathology  Branch  for  their  technical  assistance  on  this  project.    

Acknowledgements  

Table  2    

Table  2.  DifferenPally  expressed  miRNAs  and  their  target  genes  in  spontaneous  and  GBE-­‐induced  HCC  compared  to  age-­‐matched  normal  livers.    

Table  3  

Table  3.  RepresentaPve  altered  miRNA-­‐mRNA  interacPons  and  molecular  pathways.  Ingenuity  Pathway  Analysis  of  target  mRNAs  of  differenPally  altered  miRNAs  in  spontaneous  and  GBE-­‐induced  HCC  demonstrated  dysregulated  molecular  pathways  associated  with  hepatocarcinogenesis,  cell  cycle  progression,  cell  migraPon  and  cell  proliferaPon.    

Table  4.  DifferenPally  altered  miRNAs  from  other  species  that  are  staPsPcally  significant  (but  not  in  mice)  and  that  play  a  role  in  human  hepatocellular  carcinogenesis.  These  miRNA  sequences  are  typically  conserved  across  species  and  are  likely  to  be  relevant  even  in  mouse  hepatocellular  carcinogenesis.    

Table  5  

Table  5.  miRs-­‐329,  31,  145  and  433-­‐3p,  which  were  uniquely  expressed  in  GBE-­‐induced  HCC,  are  known  or  predicted  to  regulate  Wnt/Ctnnb1  signaling.    

Figure  2.  QuanPtaPve  RT-­‐PCR  validaPon  of  miRNA  array  expression  changes  observed  in  spontaneous  HCC  and  GBE-­‐induced  HCC  normalized  to  normal  livers.    

Figure  3.  QuanPtaPve  RT-­‐PCR  of  miRNAs  in  livers  from  B6C3F1  mice  treated  with  2000  mg/kg  GBE  for  90  days.  The  miRNA  expression  in  GBE  livers  was  normalized  to  normal  livers.    

 1.  Lujambio  A,  Lowe  SW.    2012.  The  microcosmos  of  cancer.  482(7385):347-­‐55. 2.  Wiklund  ED,  Kjems  J,  Clark  SJ.  2010.  EpigenePc  architecture  and  miRNA:  reciprocal  regulators.  Epigenomics.  2(6):823-­‐40. 3.  Masaki  T.  2009.  MicroRNA  and  hepatocellular  carcinoma.  Hepatol  Res.  39(8):751-­‐2. 4.  Hoenerhoff  MJ,  Pandiri  AR,  Snyder  SA,  et  al.  2013.  Hepatocellular  carcinomas  in  B6C3F1  mice  treated  with  Ginkgo  biloba  

extract  for  two  years  differ  from  spontaneous  liver  tumors  in  cancer  gene  mutaPons  and  genomic  pathways.  Toxicol  Pathol.  41(6):826-­‐41.

5.  Guo  W,  Sarkar  SK,  Peddada  SD.  2010.  Controlling  false  discoveries  in  mulPdimensional  direcPonal  decisions,  with  applicaPons  to  gene  expression  data  on  ordered  categories.  Biometrics.  66(2):485-­‐92.

6.  NTP  TR  578.  2013.  NTP  technical  report  on  the  toxicology  and  carcinogenesis  studies  of  Ginkgo  Biloba  Extract  (CAS  NO.  90045-­‐36-­‐6)  in  F344/N  rats  and  B6C3F1/N  mice  (Gavage  studies)

7.  Li  J,  Fu  H,  Xu  C,  et  al.  2010.  miR-­‐183  inhibits  TGF-­‐beta1-­‐induced  apoptosis  by  downregulaPon  of  PDCD4  expression  in  human  hepatocellular  carcinoma  cells.  BMC  Cancer.  10:354.

8.  Ura  S,  Honda  M,  Yamashita  T,  et  al.  2009.  DifferenPal  microRNA  expression  between  hepaPPs  B  and  hepaPPs  C  leading  disease  progression  to  hepatocellular  carcinoma.  Hepatology.  49(4):1098-­‐112.

9.  Sun  X,  He  Y,  Huang  C,  Ma  TT,  et  al.  2013.  DisPncPve  microRNA  signature  associated  of  neoplasms  with  the  Wnt/β-­‐catenin  signaling  pathway.  Cell  Signal.    25(12):2805-­‐11.

10.  Toffanin  S,  Hoshida  Y,  Lachenmayer  A,  et  al.  2011.  MicroRNA-­‐based  classificaPon  of  hepatocellular  carcinoma  and  oncogenic  role  of  miR-­‐517a.  Gastroenterology.  2011.  140(5):1618-­‐28.

11.  Law  PT,  Ching  AK,  Chan  AW,  et  al.  2012.  MiR-­‐145  modulates  mulPple  components  of  the  insulin-­‐like  growth  factor  pathway  in  hepatocellular  carcinoma.  Carcinogenesis.  33(6):1134-­‐41.

12.  Sachdeva  M,  Mo  YY.  2010.  MicroRNA-­‐145  suppresses  cell  invasion  and  metastasis  by  directly  targePng  mucin  1.  Cancer  Res.  70(1):378-­‐87.

13.  Kim  SJ,  Oh  JS,  Shin  JY,  et  al.  2011.  Development  of  microRNA-­‐145  for  therapeuPc  applicaPon  in  breast  cancer.  J  Control  Release.  155(3):427-­‐34.

14.  Roskoski  R  Jr.  2005.  Src  kinase  regulaPon  by  phosphorylaPon  and  dephosphorylaPon.  Biochem  Biophys  Res  Commun.  331(1):1-­‐14.

15.  Nelson  WJ,  Nusse  R.  2004.  Convergence  of  Wnt,  beta-­‐catenin,  and  cadherin  pathways.  Science.  303(5663):1483-­‐7.

References  

•  GBE-­‐induced  mouse  HCCs  are  markedly  different  from  spontaneous  HCCs  in  terms  of  their  global  miRNA  expression  profile.

•  The  miRNA  and  mRNA  array  data  from  these  tumors  demonstrated  altered  molecular  pathways  associated  with  hepatocellular  carcinogenesis.

•  miRs-­‐31,  145,  329  and  433  that  were  uniquely  expressed  in  GBE-­‐induced  HCC  are  known  or  predicted  to  regulate  Wnt/Ctnnb1  signaling.    

•  miRs-­‐411,  300,  127  and  134  were  upregulated  in  the  livers  from  GBE-­‐treated  group  compared  to  vehicle  control  group  from  90-­‐day  GBE  mouse  study  and  these  miRNAs  could  serve  as  potenPal  biomarkers  for  GBE  exposure  or  hepatocellular  carcinogenesis.

Conclusions  

(B)  

a  10  male  and  female  B6C3F1  mice  were  exposed  to  0,  125,  250,  500,  1,000,  and  2,000  mg/kg  GBE  by  gavage,  once  daily,  5  days  per  week  for  90  days.  b  Severity  grade  based  on  0–4  grading  scale  (0  =  no  significant  lesion,  1  =  minimal,  2  =  mild,  3  =  moderate,  4  =  severe).  c  50  male  and  female  B6C3F1  mice  were  exposed  to  0,  200,  600,  and  2,000mg/kg  GBE  by  gavage,  once  daily,  5  days  per  week  for  two  years.  d  StaPsPcal  analysis  not  available  for  metastaPc  lesions.  Significantly  different  from  controls  *p  <  .05,  **p  <  .01  by  the  poly-­‐3  test.  

#1  Target  genes  that  showed  relaPonship  with  the  respecPve  miRNA  in  IPA  analysis  (experimentally  observed  or  predicted)  and  down-­‐  or  up-­‐regulated  in  GBE-­‐induced  HCC  microarray  analysis.

#2  No  informaPon  on  the  target  genes  was  found  in  IPA  knowledge  base  on  these  miRNAs.

Figure  3  

Figure  1  

Figure  2  

#1  Target  genes  that  showed  relaPonship  with  the  respecPve  miRNA  in  IPA  analysis  (experimentally  observed  or  predicted)  and  down-­‐  or  up-­‐regulated  in  GBE-­‐induced  HCC  microarray  analysis.

ê:  Known  to  decrease  the  diseases  or  funcPon  and  is  down-­‐regulated  in  the  dataset.  é:  Known  to  increase  the  diseases  or  funcPon  and  is  up-­‐regulated  in  the  dataset.  êé:  Literature  indicates  this  gene  is  involved  in  the  diseases  or  funcPon  but  does  not  indicate  whether  it  

increases  or  decreases  it.  And  the  gene  is  down-­‐  or  up-­‐regulated  in  the  dataset.  

Table  4  

Table  1  (A)  

GBE-­‐induced  HCC

Spontaneous  HCC

Normal  liver