Download - Methods of variation of parameters- advance engineering mathe mathematics

Transcript
Page 1: Methods of variation of parameters- advance engineering mathe mathematics

Method of Variation of ParametersBy Kaushal Patel

Page 2: Methods of variation of parameters- advance engineering mathe mathematics

Method of Variation of Parameters

β€Ί Langrage invented the method of variation of parameters.

β€Ί Consider differential equation of the form f(D)y=X.

β€Ί when X is of the form π‘’π‘Žπ‘₯ , sin π‘Žπ‘₯, cos π‘Žπ‘₯, π‘₯π‘š, π‘’π‘Žπ‘₯ . 𝑣 or any function of x, then the shortcut methods are available which will discuss later on. If X be of any other form say tan π‘₯, sec π‘₯ , csc π‘₯ 𝑒𝑑𝑐. , then we have to use one of the following methods.

I. The method of partial fractions

II. The method of variation of parameters

Page 3: Methods of variation of parameters- advance engineering mathe mathematics

Continue…

β€Ί Consider the second order linear differential equation with constant co-efficient

𝑑2𝑦

𝑑π‘₯2+ π‘Ž1

𝑑𝑦

𝑑π‘₯+ π‘Ž2𝑦 = 𝑋 ……(i)

β€Ί Let the complementary function of (i) be 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2

β€Ί Then 𝑦1 and 𝑦2 satisfy the equation

𝑑2𝑦

𝑑π‘₯2+ π‘Ž1

𝑑𝑦

𝑑π‘₯+ π‘Ž2𝑦 = 0 ……(ii)

Page 4: Methods of variation of parameters- advance engineering mathe mathematics

Continue…

β€Ί Let us assume that the particular integral of (i) be

𝑦 = 𝑒𝑦1 + 𝑣𝑦2 ……(iii)

where u and v are unknown functions of x

β€Ί Differentiating w.r. to x, we have

𝑦′ = 𝑒𝑦1β€² + 𝑒′𝑦1 + 𝑣𝑦2

β€² + 𝑣′𝑦2 ……(iv)

β€Ί To determine two unknown functions u and v, we need two equations.

We assume that 𝑒′𝑦1 + 𝑣′𝑦2 = 0 ……(v)

∴(iv) reduces to

𝑦′ = 𝑒𝑦1β€² + 𝑣𝑦2

β€² ……(vi)

Page 5: Methods of variation of parameters- advance engineering mathe mathematics

Continue…

β€Ί Differentiating w.r. to x, we get𝑦" = 𝑒𝑦1

" + 𝑒′𝑦1β€² + 𝑣𝑦2

" + 𝑣′𝑦2β€²

β€Ί Substituting the values of 𝑦, 𝑦′ and 𝑦" in (i), we have

𝑒 𝑦1" + π‘Ž1𝑦1

β€² + π‘Ž2𝑦1 + 𝑣 𝑦2" + π‘Ž1𝑦2

β€² + π‘Ž2𝑦2 + 𝑒′𝑦1β€² + 𝑣′𝑦2

β€² = 𝑋 ……(vii)

β€Ί But 𝑦1 and 𝑦2 satisfy equation (ii)

∴ 𝑦1" + π‘Ž1𝑦1

β€² + π‘Ž2𝑦1 = 0 and 𝑦2" + π‘Ž1𝑦2

β€² + π‘Ž2𝑦2 = 0

β€Ί Equation (viii) takes the form,

𝑒′𝑦1β€² + 𝑣′𝑦2

β€² = 𝑋 ……(viii)

Page 6: Methods of variation of parameters- advance engineering mathe mathematics

Continue…

β€Ί Solving (v) and (ix), we get

𝑒′ =𝑦2𝑋

𝑦1𝑦2β€²βˆ’π‘¦2𝑦1

β€² and 𝑣′ =𝑦1𝑋

𝑦1𝑦2β€²βˆ’π‘¦2𝑦1

β€²

β€Ί Integrating, we get

𝑒 = βˆ’ 𝑦2𝑋

𝑀𝑑π‘₯ and v = βˆ’

𝑦1𝑋

𝑀𝑑π‘₯, where 𝑀 = 𝑦1𝑦2

β€² βˆ’ 𝑦2𝑦1β€²

β€Ί Substituting the values of u and v in (iii), we have

𝑃. 𝐼 = 𝑦 = βˆ’π‘¦1 𝑦2𝑋

𝑀𝑑π‘₯+𝑦2

𝑦1𝑋

𝑀𝑑π‘₯ ……(ix)

Page 7: Methods of variation of parameters- advance engineering mathe mathematics

Example

Find general solution of 𝑦" + 9𝑦 = sec 3π‘₯ by method of variation of parameters.

Solution:-

β€Ί The given differential equation can be written as,

𝐷2 + 9 𝑦 = sec 3π‘₯ , π‘€β„Žπ‘’π‘Ÿπ‘’ 𝐷 =𝑑

𝑑π‘₯

β€Ί The auxiliary equation is,𝐷2 + 9 = 0

=>𝐷 = Β±3𝑖

Page 8: Methods of variation of parameters- advance engineering mathe mathematics

Continue…

β€Ί Hence, complimentary function is𝑦𝑐 = 𝑐1 cos 3π‘₯ + 𝑐2 sin 3π‘₯

β€Ί Now we take 𝑦1 = cos 3π‘₯ , 𝑦2 = sin 3π‘₯

𝑀 =𝑦1 𝑦2𝑦1β€² 𝑦2

β€² =cos 3π‘₯ sin 3π‘₯βˆ’3 sin 3π‘₯ 3 cos 3π‘₯

=3

β€Ί Particular integral is,

𝑦𝑝 = βˆ’π‘¦1 𝑦2𝑋

𝑀𝑑π‘₯ + 𝑦2

𝑦1𝑋

𝑀𝑑π‘₯

Page 9: Methods of variation of parameters- advance engineering mathe mathematics

Continue…

= βˆ’cos 3π‘₯ sin 3π‘₯ sec 3π‘₯

3𝑑π‘₯ + sin 3π‘₯

cos 3π‘₯ sec 3π‘₯

3𝑑π‘₯

= βˆ’cos 3π‘₯

3 tan3π‘₯ 𝑑π‘₯ +

sin 3π‘₯

3 𝑑π‘₯

=cos 3π‘₯ log(cos 3π‘₯)

9+π‘₯ sin 3π‘₯

3

β€Ί Hence, general solution is

y(x)= 𝑦𝑐 + 𝑦𝑝

= 𝑐1 cos 3π‘₯ + 𝑐2 sin 3π‘₯ +cos 3π‘₯ log(cos 3π‘₯)

9+π‘₯ sin 3π‘₯

3