Download - Learning Outcomes ARTERIAL BLOOD GAS … Handouts.pdfSlide 1 'DYLG2 1HLOO06F %6F51103)+($ Associate Lecturer (Non Medical Prescribing) Cardiff University Advanced Nurse Practitioner

Transcript

Slide 1

David O’Neill MSc BSc RN NMP FHEA

Associate Lecturer (Non Medical Prescribing) Cardiff University

Advanced Nurse Practitioner Respiratory Medicine

ARTERIAL BLOOD GAS

INTERPRETATION

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 2

David O'Neill

Learning Outcomes

• Understand Acid-base balance physiology

• Understand Buffer systems in acid base

balance

• Basic understanding of Oxygen dissociation

• Know normal ABG parameters

• To systematically analyse and interpret ABG

results

• Review Anion gap and its use

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 3

David O'Neill

Acid base terminology

• Acids are substances which have a high

concentration of Hydrogen ions [H+]

– Which two bodily substances have high

concentration of hydrogen ions? (i.e. very acidic)

• Bases (or alkalis) are substances with low

concentration of hydrogen ions and high

concentration of bicarbonate ions [HCO3-]

– Which bodily substance has a high concentration

of bicarbonate ions (i.e. very alkaline)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 4

David O'Neill

pH of body fluids

Body Fluid pH

Gastric juices 1.0-3.0

Urine 5.0-6.0

Arterial blood 7.4

Venous blood 7.36

CSF 7.32

Pancreatic fluid 7.8-8.0

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 5

David O'Neill

pH scale

• Hydrogen ion concentration is

expressed as the pH scale

(range 1 to 14)

• Logarithmic scale

• If pH changes by 1 unit (7.0 to 6.0)

Hydrogen ions increase by tenfold

• Greater [H+] lower pH and vice versa

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 6

David O'Neill

Source of acids

• About 100mmols/day is formed as result of

end products of cellular metabolism of

protein, carbohydrates and fats

• It must be neutralised or excreted

• There are three main systems involved in

acid base balance – what are they?

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 7

David O'Neill

Acid base balance

• Lungs

• Kidneys

• Bones

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 8

David O'Neill

Acid base balance

• Systems interrelated

• Acid exists in two forms

– VOLATILE

• Eliminated as CO2 gas

– NON VOLATILE

• Are eliminated by the renal tubules

and regulated by HCO3-

• Lungs & Kidneys (assisted by buffers) are

main regulators of acid-base balance

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 9

David O'Neill

Carbonic acid

• Carbonic acid (H2CO3) is a weak acid

(Volatile)

• In presence of CARBONIC

ANHYDRASE (an enzyme)

• It easily breaks down into carbon

dioxide and water

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 10

David O'Neill

Respiratory equation

LUNGS KIDNEYS

• CO2 + H20 H2CO3 HCO3-+ H

+

This is a reversible reaction and can go both

ways

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 11

David O'Neill

Bicarbonate in the blood

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 12

David O'Neill

Oxygen dissociation curve

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 13

David O'Neill

Buffer systems 1

• Buffers:

– Absorb excessive H+

ions (Acids) or OH-

ions (Bases)

– Exist in ICF and ECF compartments

– FUNCTION AT DIFFERENT RATES

– Exist as buffer pairs of weak acid and

conjugate base

– Can associate and dissociate

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 14

David O'Neill

Buffer systems 2

• The most important PLASMA buffer

systems are:

– CARBONIC ACID-BICARBONATE

and

– HAEMOGLOBIN

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 15

David O'Neill

Buffer systems 3

• The most important INTRACELLULAR

buffer systems are:

– PHOSPHATE

AND

– PROTEIN

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 16

David O'Neill

Buffer systems

Buffer

pair

Buffer

system

Reaction Rate

HCO3-

/H2CO3

Bicarbonate H++ HCO3

-= H2O + CO2 INSTANT

Hb-/HHb Haemoglobin HHb = H

++ Hb

-INSTANT

HPO42-

/H2PO4-

Phosphate H2PO4-

= H+

+

HPO4-

INSTANT

Pr-/HPr Plasma

proteins

HPr = H+

+ Pr-

INSTANT

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 17

David O'Neill

ORGAN SYSTEMS

ORGANS MECHANISM RATE

Lungs Regulates retention/elimination

of CO2 and hence H2CO3

Minutes-hours

Ionic shifts Exchange intracellular

potassium and sodium for

hydrogen

2-4 hours

Kidneys Bicarbonate reabsorption and

regeneration, ammonia

formation, phosphate buffering

Hours to days

Bone Exchange calcium, phosphate

and release of carbonate

Hours to days

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 18

David O'Neill

Carbonic acid-Bicarbonate buffering

• The most important buffer.

• Operates in lungs AND kidney

• Lungs get rid of CO2 and retain H2O

• Kidneys reabsorb H2CO3-and water.

• Both systems work well together with

the lungs quickly adjusting acid

concentration and kidneys reabsorb or

regenerate H2CO3-

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 19

David O'Neill

Why is this important?

• All systems work together to maintain a NORMAL ph (7.35-7.45)

• Outside these parameters enzyme systems start to fail

• Deficit in any of these can affect acid base balance

• Adjustment of abnormal pH is called COMPENSATION but it can leave some abnormal values

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 20

David O'Neill

Renal buffering 1

• Distal tubules:

– Secrete H+

into urine and reabsorbs HCO3-

– Phosphate (HPO42-

) and ammonia (NH3)

– HPO42-

(in tubule) combines with H+

to

create H2PO4-which is lipid insoluble and

hence excreted in urine

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 21

David O'Neill

Renal buffering 2

– H+

combines with NH3 to form ammonium

ions (NH4 +) which are excreted in urine

– Buffering H+

requires use of CO2 and H2O

to form H2CO3-

– New H2CO3-

is added to plasma and H+

are excreted in urine resulting in more

alkaline plasma

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 22

David O'Neill

Normal ABG

• pH 7.35-7.45

• PaCO2 4.6 – 6 kPa (35-45mmHg*)

• PaO2 10.6- 14.6 kPa (80-110mmHg)

• HCO3 24-26mmols/l

• Base Excess -3 to + 3

*To convert kPa to mmHg multiply by 7.5

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 23

David O'Neill

Base excess

• Derived variable

• Indicates acidity/alkalinity

• Highly NEGATIVE numbers are very ACIDIC(eg -15)

• Highly POSITIVE numbers are very ALKALINE (eg +15)

• It is calculated from how much acid or alkaline is required to return pH to normal at standard temperature and pressure

• It is an alternative to looking at the HCO3 value

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 24

David O'Neill

ABG Interpretation Step 1.

Look at the pH

– Is it Low (equals ACIDIC)

– Is it High (equals ALKALINE)

– Is it Normal

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 25

David O'Neill

ABG Interpretation Step 2

• Look at the PaCO2

– Is it HIGH (equals ACIDIC)

– Is it LOW (equals ALKALINE)

– Is it NORMAL

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 26

David O'Neill

ABG Interpretation Step 3

• Look at PaO2

– Is it HIGH

– Is it LOW

– Is it NORMAL

Does Oxygen have a direct impact on acid

base balance?

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 27

David O'Neill

ABG Interpretation Step 4

• Look at the HCO3 OR Base Excess

– Is it LOW (EQUALS ACIDIC)

– Is it HIGH (EQUALS ALKALINE)

– Is it NORMAL

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 28

David O'Neill

Examples

• pH 7.30

• ACIDIC

• PaCO2 7.3kPa (55mmHg)

• ACIDIC

• PaO2 12kPa (85mmHg)

• NORMAL

• HCO3 24mmols/l

• NORMAL

• Base Excess +1

• NORMAL

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 29

David O'Neill

Interpretation

• Its an ACIDOSIS

• The system causing the acidosis is

RESPIRATORY

(high CO2 causes acidosis)

• The pH is still deranged so its ACUTE

• The HCO3 and BE are still NORMAL so

there is NO COMPENSATION

• So its an ACUTE RESPIRATORY ACIDOSIS

(acute type II respiratory failure)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 30

David O'Neill

Example 2

• pH 7.37

• PaCO2 7.3kPa (55mmHg)

• PaO2 8.0kPa (60mmHg)

• HCO3 30mmols/l

• Base Excess +7

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 31

David O'Neill

Interpretation

• pH is NORMAL

• PaCO2 is HIGH (ACID)

• PaO2 is LOW (no effect on pH at this level)

• HCO3 is HIGH (ALKALINE)

• Base excess is HIGH (ALKALINE)

• Original disturbance was respiratory

• COMPENSATION has occurred returning pH to normal range

• Chronic Type II respiratory failure

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 32

David O'Neill

Example 3

• pH 7.25

• PaCO2 10kPa (75mmHg)

• PaO2 7kPa (52.5mmHg)

• HCO3 30mmols/l

• Base Excess +6

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 33

David O'Neill

Interpretation

• pH is deranged (Acidotic)

• Therefore ACUTE

• PaCO2 is HIGH therefore ACID

• PaO2 is LOW (no effect)

• HCO3 and Base Excess are HIGH and

therefore ALKALINE AND CHRONIC

• ACUTE ON CHRONIC TYPE II

RESPIRATORY FAILURE

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 34

David O'Neill

Example 4

• pH 7.10

• PaCO2 3kPa (22.5mmHg)

• PaO2 20kPa (150mmHg)

• HCO3 14mmols/l

• Base Excess -12

• Blood Glucose 30mmols/l

• Urine Ketones +++ Glucose +++

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 35

David O'Neill

Interpretation

• pH is low therefore ACIDIC

• It is still deranged, therefore ACUTE

• PaCO2 is LOW (ALKALINE)

• PaO2 is high (probably too much O2)

• HCO3 is LOW therefore ACIDIC

• Base Excess is LOW therefore ACIDIC

• So its ACUTE METABOLIC ACIDOSIS with respiratory alkalosis (compensation)

• Given blood glucose and ketones in urine Diabetic Ketoacidosis

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 36

David O'Neill

Example 5

• pH 7.50

• PaCO2 6.6 kPa (50mmHg)

• PaO2 10kPa (75mmHg)

• HCO3 35mmols/l

• Base Excess +10

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 37

David O'Neill

Interpretation

• pH is HIGH therefore ALKALINE

• It is still deranged therefore ACUTE

• PaCO2 is slightly High (ACIDOTIC) BUT it WON’T get any higher, WHY?

• HCO3 is HIGH (ALKALINE) as is the

• Base Excess (ALKALINE)

• Therefore its an ACUTE METABOLIC ALKALOSIS with respiratory acidosis as compensation

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 38

David O'Neill

Example 6

• pH 7.10

• PaCO2 8kPa (60mmHg)

• PaO2 10kPa (75mmHg)

• HCO3 15mmols/l

• Base Excess -10

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 39

David O'Neill

Interpretation 1

• pH is LOW therefore ACID

• pH is still deranged, therefore ACUTE

• PaCO2 is HIGH therefore ACID

• PaO2 is ? Normal

• HCO3 is LOW therefore ACID

• Base Excess is LOW, therefore ACID

• So what’s going on?

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 40

David O'Neill

Interpretation 2

• It’s a MIXED ACIDOSIS,

• Predominantly METABOLIC IN ORIGIN

• Action would be to CORRECT THE

UNDERLYING METABOLIC COMPONENT

(DKA, renal Failure, Cardiac failure leading to

lactic acidosis)

• Then review the Pa CO2 which will probably

then have little effect on the pH

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 41

David O'Neill

Anion gap

• Is an estimate of unmeasured Anions

• It is the difference between:

• Cations (Na and K) and

• Anions (Cl and HCO3-

)

• NORMAL RANGE 10-18mols/l

• Eg Na + K – Cl + HCO3-

• (135 + 4.0) – (100 + 24) = 139 – 124 = 15

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 42

David O'Neill

Metabolic Acidosis with increased anion

gap

• Increased production of fixed or organic acids causes:

– HCO3-

to fall

– Unmeasured anions associated with the acids accumulate

• Caused by Increased Lactic acid (shock infection, hypoxia)

• Urea (renal failure)

• Ketones (diabetes, alcohol

• Drugs/toxins (salicylates, biguanides, ethylene glycol, methanol)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 43

David O'Neill

Metabolic Acidosis with normal anion

gap

• Due to loss of bicarbonate or ingestion

of hydrogen ions (Cl-

) retained

– Caused by renal tubular acidosis

– Profuse diarrhoea

– Drugs (acetazolamide)

– Addisons disease

– Pancreatic fistula

– Ammonium chloride ingestion

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 44

David O'Neill

Questions

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 45

David O'Neill

References

• Longmore, M, Wilkinson, I, Torok, E (2001) Oxford Hnadbook of

Clinical Medicine Oxford Oxford University Press.

• McCance KL, Heuther, SE. (2006). Pathophysiology-The biologic

basis for disease in adults and children. St Louis. Elsevier-Mosby

• Parson PE Heffner JE. (2002) Pulmonary/Respiratory Therapy

Secrets (2nd Ed.) Philadelphia. Hanley & Belfus

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 46

David O'Neill

Example 1

pH 7.494

PaCO2 (kPa) 3.2 (24mmHg)

PaO2 (kPa) 21.6 (162.5)

HCO3 (mmols/l) 21

BE -3.2

• ALKALOSIS

• RESPIRATORY CAUSE

• ACUTE (pH still deranged)

• Minimal compensation

• hyperventilation, anxiety

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 47

David O'Neill

Example 2

pH 7.28

PaCO2 10.6 (79.8)

PaO2 6.9 (51.8)

HCO3 32

BE 7

• ACIDOSIS

• RESPIRATORY CAUSE

• ACUTE

• COMPENSATION

• Acute respiratory acidosis with partial compensation

• Acute on chronic Type II respiratory failure

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 48

David O'Neill

Examples

pH PaCO2

kPa

PaO2

kPa

HCO3

(mmols/l)

BE

7.494 3.2

(24mmHg)

21.6

(162.5)

21 -3.2

7.28 10.6

79.8

6.9

51.8

32 7

7.274 11.1

(83.3)

6.48

(48.6)

35 10.4

7.17 3.9

(29.5)

53

(400.5)

8 -16.6

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Slide 49

David O'Neill

Examples

pH PaCO2

kPa

PaO2

kPa

HCO3

(mmols/l)

BE

7.278 5.2

(39.2)

8.1

(61.2)

16 -7.9

6.867 105.1 60.3 8 -16.6

7.335 12.2

(91.8)

10.5

(78.8)

16.7 -9

7.365 10.1

(76.9)

14.6

(110)

40 15.4

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________