Download - Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Transcript
Page 1: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Hydrogeology of

Grass Lake Luther Pass, California

Wes Christensen

Graham Fogg

University of California, Davis

Department of Geology

Page 2: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Overview

• Site description

– Geology

– Stream flows

– Hydraulic gradients

– Specific conductivity

• Modeling

– Parameter estimations

and measurements

– Geomorphic basis for

geologic unit thickness

• Watershed model

Page 3: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Physically Based Modeling • Explore the potential response of a

groundwater sustained peatland (Grass Lake) to predicted changes in climate

– Earlier snow melt

– Less snow, more rain on snow

• Small watershed scale (~10 km2)

– Local scale hydrology (~100 m2)

• Physical parameters governing groundwater flow and storage

– Hydraulic conductivity

– Storage coefficients

– Thicknesses of geologic units

• Protected “Research Natural Area”

– NO tracer tests

– NO pumping

– Minimal disturbance

– Natural T signal

Page 4: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Grass Lake Geology

• Weathered granodiorite

• Tertiary volcanics

• Tahoe glaciation (145 ka)

– Recessional and lateral moraines

• Tioga glaciation (19 ka)

– Terminal and cirque moraines

• Alluvium

• Peat

Page 5: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Grass Lake Streams

• Well defined outlet stream

• 4 perennial streams

• 4 intermittent streams

entering Grass Lake

– Associated with Tioga

age glacial cirques

• Intermittent /ephemeral

channels in upper WS

Page 6: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

0

10

20

30

40

50

60

70

80

4/20 5/20 6/19 7/19 8/18 9/17 10/17

Flo

w (

cfs

)

Date

Grass Lake Outlet

2010

2011

Stream Flow (y-axes different scale)

0

2

4

6

8

10

12

4/20 5/20 6/19 7/19 8/18 9/1710/17

Flo

w (

cfs

)

Date

First Creek

2010

2011

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4/20 5/20 6/19 7/19 8/18 9/1710/17

Flo

w (

cfs

)

Date

Waterhouse Creek

2010

2011

0.00

1.00

2.00

3.00

4.00

5.00

6.00

4/20 5/20 6/19 7/19 8/18 9/1710/17

Flo

w (

cfs

)

Date

W Freel Meadows Creek

2010

2011

0

5

10

15

20

25

30

35

4/20 5/20 6/19 7/19 8/18 9/1710/17

Flo

w (

cfs

)

Date

Freel Meadows Creek

2010

2011

• Base flow ~ same in small creeks

– WH Ck and WFM Ck slightly longer recession

• Outlet recession different for 2010 & 2011

Page 7: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Groundwater • 30 piezometers near shore

• Screened in sediment below peat

• Gradient = (GW-SW)/(DEPTH)

– Limited to presence of SW

• Often artesian flow (upward)

GW SW

Page 8: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Date

N1 N2 N3 N4 N5 N7 N8N9 N10 N11 N12 N13 N14 N15

Vertical Hydraulic Gradients

(+ is upward flow)

• Gradient requires surf water

• (GW-SW)/(DEPTH)

• High gradient over short

vertical distances

• Gradient drives flow from

hillslope/confined aquifer

through the peat

• Gradient S > Gradient N

• N = road

• S = glacial deposits

S1 S3 S4 S5 S6 S7 S8

S9 S10 S11 S12 S13 S14 S15

-0.1

0.0

0.1

0.2

0.3

0.4

4/20 6/19 8/18 10/17

Hyd

rau

lic G

rad

ien

t (m

/m)

Date 2010

2010 (S)

-0.1

0.0

0.1

0.2

0.3

0.4

4/20 6/19 8/18 10/17

Hyd

rau

lic G

rad

ien

t (m

/m)

Date

2011 (S)

-0.1

0.0

0.1

0.2

0.3

0.4

4/20 6/19 8/18 10/17

Hyd

rau

lic G

rad

ien

t (m

/m)

Date 2011

2011 (N)

-0.1

0.0

0.1

0.2

0.3

0.4

4/20 6/19 8/18 10/17

Hyd

rau

lic G

rad

ien

t (m

/m)

Date 2010

2010 (N)

Page 9: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Confined Head Contours

• “Shadow” effect from bedrock

• Stream influence

• Larger change along N than S

– 0.1 to 0.9m change in N

– 0.1 to 0.3m change in S

Fall 2010 Piezometric Head Spring 2011 Piezometric Head

Page 10: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Specific Conductivity

• North GW >> (South GW ~ Streams)

• (South GW > South SW) ~ Streams

• Dilution of GW and SW from snowmelt

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

2/26 4/17 6/6 7/26 9/14 11/3

Spe

cifi

c C

on

cuti

vity

(u

S/cm

)

Date 2011

SC: Streams 2011

1st Creek WFM Creek FM Creek WH Creek Outlet

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

4/17 6/6 7/26 9/14 11/3

Date 2011

SC: Piezometers 2011

N11 N5 S8 S3

N11 SW N5 SW S8 SW S3 SW

Page 11: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Parameter Estimation

• Vertical hydraulic gradients sensitive to Ksat(peat) – Can be determined using vertical T profiles and head

• Recession of Outlet flow sensitive to peat water retention

• Recession of stream flows sensitive to hillslope transmissivity and storage (Ksat and thickness)

Page 12: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Harsh Winter Conditions

Deep Snow

Metal Piezometers

Vertical GW flow distorts propagation of surface heat changes into subsurface

• TidBit temperature loggers

• various depths in piez

• shallow outside in peat

Vertical Hydraulic Conductivity

from Temperature

Page 13: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Temperature Observations

• Maximum T is delayed in both piez and peat relative to air T (~7-10 hours)

• Minimum T in piez is delayed relative to minimum air T (~1 hour)

• Minimum T in peat is delayed relative to air T and piez T (~5 hours)

• Obvious difference between T signal in piezometer and in peat

N7: T(t) at different depths

0

5

10

15

20

25

7/26/11 7/27/11 7/28/11 7/29/11 7/30/11 7/31/11 8/1/11 8/2/11

Date

Tem

pera

ture

(C

)

r=0cm, z=10.8cmr=22.4cm, z=10.2cmair T

Page 14: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Effects of Metal on Temperature • Thermal Conductivity of metal 16 W m-1 K-1

• Thermal conductivity of peat < 0.5 W m-1 K-1

• At ~10 cm Tinside ~ 4°C higher than Toutside

• Max Tinside earlier than Max Toutside • Significantly affects parameter estimates

r (m) r (m)

Page 15: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Peat Water

Retention • Hanging water column

• Spec suction head to 1.5m

• Saturated water content ~80%

• Water content at 0.5m ~60%

• PC4 was the most

decomposed sample

0.00

0.50

1.00

1.50

2.00

0.00 0.50 1.00

su

cti

on

(m

)

volumetric water content (%)

Grass Lake Peat Retention Curves

PC1

PC2

PC3

PC4

Page 16: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Shallow Subsurface Thickness • Down cutting of streams in upper WS in response to glaciers

– 80+m thick weathered bedrock (grus)

• Projection of glaciated bedrock surface – 5 to 40m thick glacial till

• Electrical Resistivity Imaging (Doug Clark, unpub.) – 80m thick valley fill (peat surface to bedrock)

• Probes and ERI

– 0 to 10m thick peat

• Lidar Data was

INDESPENSIBLE

- Provided by

Tahoe Regional Planning Agency

http://dx.doi.org/10.5069/G9PN93H2

Page 17: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Watershed Model

Hydrogeosphere

Fully coupled SW-GW flow

1m of surface recharge

Drain for 6 month

Page 18: Influence of Metal Piezometers on Subsurface Temperaturetahoescience.org/wp-content/uploads/2012/06/Christensen-Wes... · – Parameter estimations and measurements – Geomorphic

Acknowledgements

• Ida Fischer

• Sherry Devenberg

• Caleb Kesling

• LTBMU

– David Immeker

– Sarah Howell

– Shana Gross

• Fogg Lab

– Nick Newcomb

– Nick Engdahl

– Dylan Boyle

– Ehsan Rasa

– Charlie Paradis