Download - Huseyin Ayvaz IFT 2013 poster - finall.pdf.pptx (Read-Only) · 2016-09-11 · Title: Huseyin Ayvaz IFT 2013 poster - finall.pdf.pptx (Read-Only) Author: Luis Rodriguez-Saona Created

Transcript
Page 1: Huseyin Ayvaz IFT 2013 poster - finall.pdf.pptx (Read-Only) · 2016-09-11 · Title: Huseyin Ayvaz IFT 2013 poster - finall.pdf.pptx (Read-Only) Author: Luis Rodriguez-Saona Created

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Applica(on  of  a  Portable  Infrared  Technology  (PIRT)  for  Screening  Sugar  Levels  in  Chipping  Potatoes  Huseyin  Ayvaz1,  Jennifer  Moyseenko2,  Ma6hew  Kleinhenz2  and  L.  E.  Rodriguez-­‐Saona1  

1  Department  of  Food  Science  and  Technology,  The  Ohio  State  University,  Columbus,  OH,  43210  2  Ohio  Agricultural  Research  and  Development  Center,  The  Ohio  State  University,  Wooster,  OH,  44691  

 

 

     

Ø  Sugars  in  potato  tubers  are  key  components  influencing  the  quality  of  processed  potato  products.  Maillard  reacVon  between  reducing  sugars  (glucose  and  fructose)  and  free  amino  acids  produces  the  color  and  flavor  of  the  products  [1].  AddiVonally,  acrylamide  which  is  a  human  neurotoxin  and  “probably  carcinogen  to  humans”  is  formed  through  this  reacVon  between  reducing  sugars  and  mainly  asparagine  at  high  temperatures  [2].    

Ø  Sucrose  may  also  involve  in  Maillard  reacVon  through  hydrolysis  during  frying.  Reducing  sugars  can  also  form  from  sucrose  via  invertase  enzyme  acVvity  during  the  storage.  Regarding  the  Maillard  reacVon,  reducing  sugars  have  been  shown  to  be  the  limiVng  factor.  Several  factors  including  genotype,  the  environmental  condiVons  during  growth  and  post-­‐harvest  factors  such  as  storage  can  affect  the  sugar  levels  in  potatoes  [3].  

Ø  The  most  popular  methods  used  to  determine  sugar  and  asparagine  levels  in  raw  potatoes  requires  intensive  sample  preperaVons  and  chromotographic  separaVons  such  as  HPLC  or  GC,  which  are  Vme  consuming  and  labor  intensive,  making  efficient  assays  for  rapid,  accurate  and  “in-­‐field”  tesVng  desirable.  

Ø  Infrared  spectroscopy  has  been  used  for  numerous  food  applicaVons  related  to  quality  control  and  safety  of  our  food  supply  providing                valuable  informaVon  about  the  biochemical  composiVon  of  the  samples,  especially  in  the  fingerprint  region.  Ø  MiniaturizaVon  of  vibraVonal  spectroscopy  components  has  allowed  the  development  of  portable  and  handheld  systems  that  offer                simplicity,  speed,  selecVvity  and  performance  similar  to  that  of  benchtop  instruments  used  in  laboratories  [4].  Ø  In  order  to  compare  the  infrared  models,  raVo  of  predicVon  to  validaVon  (RPD)  can  be  used.  It  is  calculated  by  dividing  standard  deviaVon  in  validaVon  set  samples  to  standard  

error  of  predicVon  (SEP)  in  validaVon  set.  RPD  values  between  2.5  and  3.0  is  considered  as  good  and  above  RPD  value  of  3.0,  the  predicVon  is  classified  as  excellent  [5].  

  Among  many   compounds   present   in   potato   tuber,   sugars   are   considered   as   the  most   important   ones   influencing   the   quality   of   processed   potato   products.  Maillard  reacVon  between  reducing  sugars  and  free  amino  acids  contributes  to  the  color  and  flavor  of  the  products,  remarkably.  AddiVonally,  acrylamide,  which  is  a  human  neurotoxin  and  a  “probable  carcinogen  to  humans”,  is  formed  primarily  through  this  reacVon  between  reducing  sugars  and  asparagine  at  high  temperatures.  Currently,  the  most  common  methods  used  to  determine  sugars  and  asparagine  in  raw  potatoes  require  intensive  sample  preperaVon  and  chromotographic  separaVon  which  are  Vme  consuming  and  labor  intensive.    Efficient  assays  for  rapid,  accurate  and  “in-­‐field”  tesVng  are  thus  desirable.  Our  main  objecVve  was  to  evaluate  the  feasibility  of  using  a  portable  infrared  technology  instrument  (PIRT)  for  the  rapid  quanVtaVon  of  sugars  and  asparagine  in  chipping  potato  varieVes.  Samples  represenVng  a  total  of  47  experimental  clones  or  commercial  varieVes  were  obtained  from  the  Ohio  Agricultural  Research  and  Development  Center  in  Wooster  (OH).  Sugar  levels  were  determined  using  HPLC-­‐RID  as  reference  method  and  found  to  encompass  a  wide  range  of  levels:  0.8-­‐6.9  mg  glucose,  0.5-­‐9.2  mg  fructose  and  1-­‐4.7  mg  sucrose  per  1  g  fresh  weight.  Asparagine  levels  (4.9-­‐23.8  mmol/kg  fresh  weight)  were  determined  using  GC-­‐FID  as  reference  method.  Ten  variety  of  potatoes  were  also  made  into  slices  and  fried  for  acrylamide  analysis  by  LC-­‐MS/MS.    

 Soluble  solids  obtained  from  raw  potatoes  following  very  simple  sample  preperaVons  (centrifugaVon  or  mixing  with  water)  were  used  for  infrared  spectra  collecVons.  The  potatoes’  sugar  and  asparagine  levels  were  correlated  with  the  infrared  spectra  and  the  resulVng  ParVal  Least  Squares  Regression  models  (n=37)  were  used  to  predict  sugar  and  asparagine  levels  of  unknown  potato  samples  (n=11).  Excellent  linear  correlaVons  between  predicted  and  reference  values  from  HPLC  and  GC  were  obtained  for  the  independent  sample  set.  PLSR  models  gave  high  rPred  (correlaVon  coefficient  for  predicVon,  >0.90)  and  very  low  standard  errors  of  predicVons  (SEP).  RaVos  of  predicVon  to  validaVon  (RPD)  ranged  between  2.2  and  5.0  indicaVng  reliable  and  robust  models  for  the  predicVon  of  sugar  and  asparagine  levels  in  potatoes.    

 In  contrast  to  chromotographic  methods,  PIRT  allows  for  the  rapid,  inexpensive,  high  throughput  and  accurate  measurement  of  tuber  sugar  and  asparagine  levels  in-­‐field  and  in  storage.  PIRT  also  shows  promise  for  the  predicVon  of  acrylamide  levels  in  fried  potato  chips.  Therefore,  PIRT  can  significantly  benefit  potato  breeding  as  well  as  certain  aspects  of  crop  management,  producVon  and  research.    

RESULTS

                                                                                                 

REFERENCES 1.  Rodriguez-­‐Saona,  L.  E.,  &  Wrolstad,  R.  E.  (1997).  Influence  of  Potato  ComposiVon  on  Chip  Color  Quality.    American  Journal  of  Potato  Research,    74,  87-­‐106.  2.  Friedman,  M.  (2003).  Chemistry,  biochemistry,  and  safety  of  acrylamide.  A  review.  Journal  of  Agricultural  and  Food  Chemistry,  51,  4504-­‐4526.  3.  Kumar,  D.,  Singh,  B.  P.,  &  Kumar,  P.  (2004).  An  overview  of  the  factors  affecVng  sugar  content  of  potatoes.  Annals  of  Applied  Biology,  145,  247-­‐256.  4.  Ellis,  D.I.,  &  Goodacre,  R.  (2006).  Metabolic  fingerprinVng  in  disease  diagnosis:  biomedical  applicaVons  of  infrared  and  Raman  spectroscopy.  The  Analyst,  131,  875-­‐885.  5.  Saeys,  W.,  Mouazen,  A.M.,  &  Ramon,  H.  (2005).  PotenVal  for  Onsite  and  Online  Analysis  of  Pig  Manure  using  Visible  and  Near  Infrared  Reflectance  Spectroscopy.  Biosystems  Engineering,  91,  393-­‐402  

INTRODUCTION

ABSTRACT

Ø  To  develop  simple,  sensiVve  and  robust  methods  for  quanVficaVon  of  sugars  and  asparagine  levels  in  raw  potatoes  using  a  portable  Cary  630  FTIR  system  based  on  highly  specific  MIR  spectroscopic  signature  profiles  in  combinaVon  with  supervised  pa6ern  recogniVon  techniques    

Ø  Evaluate  the  performance  of  different  accessories  for  infrared  spectra  collecVon  (transmission  cell,  single  bounce  ATR  and  five  bounce-­‐temperature  controlled  ATR)  Ø  Evaluate  the  spectra  from  raw  potatoes  for  predicVng  acrylamide  formaVon  upon  frying  

OBJECTIVES

MATERIALS AND METHODS

Ø  Using  the  same  spectra,  separate  sucrose,  glucose,  fructose,  reducing  sugars  and  asparagine  PLSR  models  were  successfully  developed  (rPed  >  0.9)  Ø  MulVvariate  models  accurately  predicted  sugar  levels  in  independent  sample  sets  with  RPD  value  being  higher  than  2.5  for  most  of  the  models,  which  indicates  that  models  

can  be  used  for  quanVtaVve  measurements.  Only  excepVon  was  fructose  models  whose  RPD  values  ranged  between  2.2  and  2.4.  It  may  be  be6er  to  use  total  reducing  sugar  model  unless  individual  fructose  result  is  needed.  

Ø  Asparagine  models  gave  very  high  RPD  values  (between  3.4  and  3.9)  Ø  Using  the  same  infrared  regions  as  sugar  models  from  raw  potato  spectra,  acrylamide  formed  upon  deep  frying  of  10  varieVes  of  potatoes  was  accurately  predicted.  However,  

acrylamide  levels  found  in  fried  chips  were  remarkably  higher  than  those  of  most  of  the  industrial  potato  chips.  SVll,  the  preliminary  data  is  very  promising  for  future  research.  Ø  For  all  the  IR  sample  preparaVon,  3000  and  12000  g  centrifugaVon  was  applied  for  potatoes  to  obtain  supernatant  and  develop  the  models.  Since  3000  g  provided  similarly  

good  models,  there  is  no  need  to  do  12000  g,  which  may  also  increase  the  applicability  of  the  propose  techniques  (Only  results  for  3000  g  are  shown).  Ø  Different    accessories  of  Cary  630  FTIR  used  performed  similarly,  which  indicates  that  any  of  them  can  be  chosen  for  the  applicaVons  (transmission  cell,  one  bounce  and  five  

bounce  ATR`s)  Ø  Using  the    portable  systems   is  simple,  cost-­‐effecVve  and  requires   low  sample  volume;  once  the   instrument   is  purchased,   there  are  minimal  operaVonal  costs   involved  on  

performing   the   tests.   AddiVonally,   portable   systems   provide   increased   flexibility   and   great   potenVal   for   in-­‐field   applicaVons   compared   to   bench-­‐top   IR   systems   or  chromotographic  systems  such  as  HPLC  and  GC,  which  can  only  be  used  in  a  laboratory  setng.    

DISCUSSION & CONCLUSIONS

Table  1  PredicVon  Performance  Summary  of  PLSR  models  developed  for  sugars  in  potatoes  using  different  accessories  of  portable  Cary  630  IR  systems    Analyte   Range    

(mg/g)  Technique   Factors   rVal   SECV   rPred   SEP   RPD  

 Sucrose  

  Transmission  cell   8   0.97   0.27   0.97   0.32   3.6  1.0  -­‐  4.7   Single  bounce  ATR   5   0.98   0.26   0.98   0.24   5.0  

  5  bounce  ATR   5   0.97   0.26   0.97   0.32   3.7    

Glucose     Transmission  cell   6   0.94   0.49   0.98   0.51   3.4  

0.8  –  6.9   Single  bounce  ATR   6   0.95   0.47   0.97   0.51   3.1     5  bounce  ATR   3   0.92   0.52   0.98   0.62   2.6  

 Fructose  

  Transmission  cell   8   0.94   0.72   0.96   0.87   2.4  0.5  –  9.2   Single  bounce  ATR   8   0.93   0.81   0.91   0.87   2.2  

  5  bounce  ATR   7   0.94   0.75   0.90   0.82   2.3  Glucose  

+  Fructose  

  Transmission  cell   7   0.95   1.04   0.98   1.28   2.6  1.3  –  15.5   Single  bounce  ATR   8   0.94   1.11   0.97   1.20   3.1  

  5  bounce  ATR   7   0.94   1.25   0.92   1.46   2.4    

Table   2   PredicVon   Performance   Summary   of   PLSR   models   developed   for  asparagine  in  potatoes  using  different  accessories  of  portable  Cary  630  IR  systems    

Analyte   Range    (mmol/kg)  

Technique   Factors   rVal   SECV   rPred   SEP   RPD  

 Asparagine  

  Transmission  cell   8   0.96   0.96   0.97   1.16   3.9  4.9  –  23.8   Single  bounce  ATR   8   0.96   0.94   0.96   1.30   3.4  

  5  bounce  ATR   6   0.97   1.09   0.97   0.87   3.8    

3  

7  

11  

15  

19  

23  

3   7   11   15   19   23  

Pred

icted  aspa

ragine

 con

centra(o

n  (m

mol/kg)  

Asparagine  concentra(on  measured  by  GC-­‐FID  (mmol/kg)  

ASPARAGINE  TRANSMISSION  

3  

7  

11  

15  

19  

23  

3   7   11   15   19   23  

Pred

icted  aspa

ragine

 con

centra(o

n  (m

mol/kg)  

Asparagine  concentra(on  measured  by  GC-­‐FID  (mmol/kg)  

ASPARAGINE  5  BOUNCE  ATR  

1  

6  

11  

16  

21  

1   6   11   16   21  Pred

icted  acrylamide  concen

tra(

ons  (mg/

kg)    

Acrylamide  concentra(on  measured  by  LC-­‐MS/MS  (mg/kg)  

ACRYLAMIDE  TRANSMISSION  

Factor  :  8  SECV  :  0.3  mg/kg  rVal  :  0.99  

0.25  

1.25  

2.25  

3.25  

4.25  

5.25  

6.25  

0.25   1.25   2.25   3.25   4.25   5.25   6.25  

Pred

icted  sucrose  concen

tra(

on  (m

g/g)  

Sucrose  concentra(on  measured  by  HPLC-­‐RID  (mg/g)  

SUCROSE  TRANSMISSION  

0.5  

2.5  

4.5  

6.5  

8.5  

10.5  

12.5  

14.5  

16.5  

1   3   5   7   9   11   13   15   17  

Pred

icted  redu

cing  su

gar  con

centra(o

n  (m

g/g)  

Reducing  sugar  concentra(on  measured  by  HPLC  -­‐RID  (mg/g)  

REDUCING  SUGARS  TRANSMISSION  

0.25  

1.25  

2.25  

3.25  

4.25  

5.25  

6.25  

0.25   1.25   2.25   3.25   4.25   5.25   6.25  

Pred

icted  sucrose  concen

tra(

on  (m

g/g)  

Sucrose  concentra(on  measured  by  HPLC-­‐RID  (mg/g)  

SUCROSE  1  BOUNCE  ATR  

0.5  

2.5  

4.5  

6.5  

8.5  

10.5  

12.5  

14.5  

16.5  

0.5   2.5   4.5   6.5   8.5   10.5   12.5   14.5   16.5  

Pred

icted  redu

cing  su

gar  con

centra(o

n    (m

g/g)  

Reducing  sugar  concentra(on  measured  by  HPLC-­‐RID  (mg/g)    

REDUCING  SUGARS  1  BOUNCE  ATR  

0.25  

1.25  

2.25  

3.25  

4.25  

5.25  

6.25  

0.25   1.25   2.25   3.25   4.25   5.25   6.25  

Pred

icted  sucrose  concen

tra(

on  (m

g/g)  

Sucrose  concentra(on  measured  by  HPLC-­‐RID  (mg/g)  

SUCROSE  5  BOUNCE  ATR  

0.5  

2.5  

4.5  

6.5  

8.5  

10.5  

12.5  

14.5  

16.5  

0.5   2.5   4.5   6.5   8.5   10.5   12.5   14.5   16.5  

Pred

icted  redu

cing  su

gar  con

centra(o

n  (m

g/g)  

Reducing  sugar  concentra(on  measured  by  HPLC-­‐RID  (mg/g)  

REDUCING  SUGARS  5  BOUNCE  ATR  

Figure  2.  PLSR  calibration  and  validation  plots  for  asparagine                                                                                    1  

( ,  represent  samples  in  calibration  and  validation  groups,  respectively)  2  

Figure  1.  PLSR  calibration  and  validation  plots  for  sugars                                                                                              1  ( ,  represent  samples  in  calibration  and  validation  groups,  respectively)  2  

PLSR Modeling ü  Spectral transformation

Normalize 2nd derivative (25)

ü  Selected spectral region 900-1500 cm-1 for sugars 900-1700 cm-1 for asparagine

ü  37 varieties used in calibration and 11 varieties used in validation set

Figure  3.  Average  of  all  spectra  collected  using  transmission  and  five  bounce  1  

temperature  controlled  unit  of  portable  Cary  630  IR  system  2  PLSR Modeling

ü  Supernatant of 1 g raw potato powder

ü  Spectral transformation 2nd derivative (35)

ü  Selected spectral region 900-1500 cm-1 for acrylamide

ü  Only 9 varieties fried and used as preliminary

Figure  4.  PLSR  plot  for  acrylamide  content  of  potato  chips  made  1  

Sugar  extracVons    (80  %  ethanol)  

Amino  acid  extracVon      (EZFaast  kit)  

Asparagine  analysis  using        GC-­‐Flame  IonizaVon  Detector  

Glucose,  fructose  and  sucrose  measured  by  

HPLC-­‐RID  

Blend  with  liquid  Nitrogen  

Acrylamide  extracVon  and  

analysis  using    LC-­‐MS/MS  

Deep  frying    (180  0C,  2.5  min)  

10  µL  supernatant  on  transmission  cell  (30  µm  path  

length)      

1  µL  supernatant  on  single  bounce  ATR  

 (1  min  vacuum  drying)    

1  g  potato  centrifuged    at  3000  g  for  15  minutes  

2  g  potato  +  25  ml  water  sVrred  for  15  minutes  

75  µL  supernatant  on                  5  bounce  ATR    (2.5  min  vacuum  drying  at  65  0C)  PLSR  

900140019002400290034003900

SNV(abs)

Wavenumber (cm-­‐1)

5  Bounce  ATR Transmission