Download - Homework from Phillips' book, Mechanics of Flight

Transcript
Page 1: Homework from Phillips' book, Mechanics of Flight

Gustavo  Narez  MAE  3306-­‐001  Dr.  Chudoba  Jan.  27,  2012        Problem  1  An  airfoil  has  section  lift,  drag,  and  quarter-­‐chord  moment  coefficients  

given  by  the  following  equations:    

𝐢! = 5.0𝛼 + 0.3                πΆ! = 0.2𝛼! + 0.004              πΆ!!/! = βˆ’0.04βˆ’ 0.01𝛼    

where  π›Ό  is  the  angle  of  attack  in  the  radians.  Find  the  center  of  pressure  and  the  aerodynamic  center  of  the  airfoil  for  angles  of  attack  of  -­‐5,  0,  5  and  10  degrees.      

Solution.    

  !!"!= 0.25βˆ’

 !!!!

!!= 0.25βˆ’

 !!!!

!! !"#!!!! !"#!  

 

= 0.25βˆ’βˆ’0.04βˆ’ 0.01𝛼

5.0𝛼 + 0.3 cos𝛼 + (0.2𝛼! + 0.004) sin𝛼  

 π›Ό(deg)   𝛼 π‘Ÿπ‘Žπ‘‘   π‘₯!"

𝑐  

-­‐5   -­‐0.0873   -­‐0.034261  0   0   0.3833333  5   0.0873   0.301885  10   0.1745   0.278507  

 

π‘₯!"𝑐 = 0.25βˆ’

 πΆ!!!,!

𝐢!,!= 0.25βˆ’

 πΆ!!!,!

(𝐢! ,𝛼 + 𝐢!)cos𝛼 βˆ’ (𝐢! βˆ’ 𝐢!,!) sin𝛼  

 πΆ!!

!,!= βˆ’0.01                      πΆ!,! = 5.0                            πΆ!,! = 0.4𝛼  

 

= 0.25βˆ’βˆ’0.01

(5+ 0.2𝛼! + 0.004)cos𝛼 βˆ’ (5.0𝛼 + 0.3βˆ’ 0.4𝛼) sin𝛼  

 π›Ό(deg)   𝛼 π‘Ÿπ‘Žπ‘‘   π‘₯!!

𝑐  

-­‐5   -­‐0.0873   0.2520  0   0   0.2520  5   0.0873   0.2520  10   0.1745   0.2521  

       

Page 2: Homework from Phillips' book, Mechanics of Flight

Gustavo  Narez  MAE  3306-­‐001  Dr.  Chudoba  Jan.  27,  2012          Problem  2  Compute  the  absolute  temperature,  pressure,  density,  and  speed  of  sound  for  the  standard  atmosphere  defined  in  table  1.2.1  at  a  geometric  altitude  of  35,000  meters.    Solution    

𝑍 =𝑅!𝐻𝑅! + 𝐻

=6,356,766π‘š   35,000π‘š6,356,766π‘š + 35,000π‘š

= 34,808π‘š  

 π‘! = 11,000π‘š  π‘‡! = 288.15  πΎ              π‘‡!! = βˆ’6.5   !

!"  

 π‘‡! = 𝑇! + 𝑇!! 𝑍! βˆ’ 𝑍! = 288.15  πΎ βˆ’ 6.5 11 βˆ’ 0 = 216.65𝐾    

𝑝! = 𝑝!𝑇!𝑇!

!!!!!!!

= 101,325  π‘ π‘š!216.650𝐾288.150𝐾

βˆ’9.806645  π‘š 𝑠2287.05  π‘š2 𝑠2‒𝐾(βˆ’0.00065  πΎ π‘š)

= 22,632  π‘ π‘š!  

 π‘! = 20,000  π‘š    π‘‡! = 216.650  πΎ                  π‘‡!! = 0.0  πΎ/π‘˜π‘š    π‘‡! = 𝑇! + 𝑇!! 𝑍! βˆ’ 𝑍! = 216.650  πΎ    

𝑝! = 𝑝!  π‘’!!! !!!!!

!!! =22,632  π‘ π‘š!  π‘’π‘₯𝑝 βˆ’9.806645  π‘š 𝑠2   20,000βˆ’11,000 π‘š287.05  π‘š2 𝑠2‒𝐾    216.650𝐾) = 5,474.9  π‘/π‘š2  

 π‘! = 32,000π‘š    π‘‡! = 216.650  πΎ              π‘‡!! = 1.0  πΎ/π‘š    

𝑇! = 𝑇! + 𝑇!! 𝑍! βˆ’ 𝑍! = 216.650  πΎ + 1.0πΎπ‘˜π‘š

32.000 βˆ’ 20.000 π‘˜π‘š =  228.65  πΎ    

𝑝! = 𝑝!𝑇!𝑇!

!!!!!!!

= 868.02  π‘/π‘š!  

 π‘! = 34,808π‘š    

𝑇! =  228.65            π‘‡!! = 2.8πΎπ‘˜π‘š

 

   

Page 3: Homework from Phillips' book, Mechanics of Flight

Gustavo  Narez  MAE  3306-­‐001  Dr.  Chudoba  Jan.  27,  2012      π‘‡ = 𝑇! + 𝑇!! 𝑍 βˆ’ 𝑍! = 228.65 + 2.8

πΎπ‘˜π‘š

  34.808 βˆ’ 32.000 π‘˜π‘š = 236.51  πΎ    

𝑝 = 𝑝!𝑇𝑇!

!!!!!!!

= 868.02π‘π‘š!  

235.51  πΎ  228.65  πΎ

!!!!!!!

= 605.19  π‘/π‘š!  

 

𝜌 =𝑃𝑅𝑇

=605.19  π‘/π‘š!

287.05π‘š!/𝑠! β€’ 𝐾(  236.51  πΎ)= 0.00891  π‘˜π‘”/π‘š!  

 π‘Ž = 𝛾𝑅𝑇 = 1.4 β€’ 287.0528  π‘š!/𝑠! β€’ 𝐾(236.51) = 308.297  π‘š/𝑠        

Page 4: Homework from Phillips' book, Mechanics of Flight

Gustavo  Narez  MAE  3306-­‐001  Dr.  Chudoba  Jan.  27,  2012      Problem  3  Compute  the  absolute  temperature,  pressure,  density,  and  speed  of  sound,  in  English  units,  for  the  standard  atmosphere  that  is  defined  in  table  1.2.1  at  a  geometric  altitude  of  95,000  ft.    Solution    π» = 95,000  π‘“𝑑   . 3048

π‘šπ‘“π‘‘

= 28,956  π‘š  

𝑍! = 11,000  π‘š    

𝑍 =𝑅!𝐻𝑅! + 𝐻

=6,356,766π‘š   28,956  π‘š6,356,766π‘š + 28,956  π‘š

= 34,808π‘š  

 π‘! = 11,000π‘š  π‘‡! = 288.15  πΎ              π‘‡!! = βˆ’6.5   !

!"  

 π‘‡! = 𝑇! + 𝑇!! 𝑍! βˆ’ 𝑍! = 288.15  πΎ βˆ’ 6.5 11 βˆ’ 0 = 216.65𝐾    

𝑝! = 𝑝!𝑇!𝑇!

!!!!!!!

= 101,325  π‘ π‘š!216.650𝐾288.150𝐾

!!.!"##$%  ! !!!"#.!"  !! !!β€’!(!!.!!!"#  ! !)

= 22,632  π‘ π‘š!  

 π‘! = 20,000  π‘š    π‘‡! = 216.650  πΎ                  π‘‡!! = 0.0  πΎ/π‘˜π‘š    π‘‡! = 𝑇! + 𝑇!! 𝑍! βˆ’ 𝑍! = 216.650  πΎ    

𝑝! = 𝑝!  π‘’!!! !!!!!

!!! =22,632  π‘ π‘š!  π‘’π‘₯𝑝 !!.!"##$%  ! !!   !",!!!!!!,!!! !!"#.!"  !! !!β€’!    !"#.!"#!)

= 5,474.9  π‘/π‘š!    π‘! = 28,956π‘š    π‘‡! = 216.650  πΎ              π‘‡!! = 1.0  πΎ/π‘š    

𝑇 = 𝑇! + 𝑇!! 𝑍! βˆ’ 𝑍! = 216.650  πΎ + 1.0πΎπ‘˜π‘š

28.956 βˆ’ 20.000 π‘˜π‘š =  224.65  πΎ  

 

𝑝 = 𝑝!𝑇!𝑇!

!!!!!!!

= 1,586.27  π‘/π‘š!  

 

𝑇 = 224.65  πΎ βˆ—95°𝑅𝐾

= 404.37  Β°π‘…  

𝑝 = 1,586.27  π‘/π‘š! 0.02088543  π‘™π‘π‘“𝑓𝑑!

π‘π‘š! = 33.13

𝑙𝑏𝑓𝑓𝑑!

= 0.230  π‘π‘ π‘–  

Page 5: Homework from Phillips' book, Mechanics of Flight

Gustavo  Narez  MAE  3306-­‐001  Dr.  Chudoba  Jan.  27,  2012    

𝜌 =𝑃𝑅𝑇

=1,586.27 𝑁

π‘š!

287.05  π‘š! 𝑠! β€’ 𝐾     224.65  πΎ= 0.0246

π‘˜π‘”π‘š!   0.001940320

𝑠𝑙𝑒𝑔𝑓𝑑!π‘˜π‘”π‘š!

= 0.000047729𝑠𝑙𝑒𝑔𝑓𝑑!

 

 

π‘Ž = 𝛾𝑅𝑇 = 1.4 β€’ 287.0528  π‘š!/𝑠! β€’ 𝐾(224.65  πΎ) = 300.468π‘šπ‘   

10.3048  

π‘“π‘‘π‘š

= 985.79𝑓𝑑π‘