Download - Harold’s Exponential Growth and Decay Cheat Sheet...Harold’s Exponential Growth and Decay Cheat Sheet 16 May 2016 Discrete Continuous 𝐴=𝑃(1+ N J) 𝑛𝑑 𝐴=𝑃 π‘Ÿπ‘‘

Transcript
Page 1: Harold’s Exponential Growth and Decay Cheat Sheet...Harold’s Exponential Growth and Decay Cheat Sheet 16 May 2016 Discrete Continuous 𝐴=𝑃(1+ N J) 𝑛𝑑 𝐴=𝑃 π‘Ÿπ‘‘

Copyright Β© 2014-2016 by Harold Toomey, WyzAnt Tutor 1

Harold’s Exponential Growth and Decay Cheat Sheet

16 May 2016

Discrete Continuous

𝐴 = 𝑃 (1 +π‘Ÿ

𝑛)

𝑛𝑑

𝐴 = π‘ƒπ‘’π‘Ÿπ‘‘

Simple Interest: 𝐴 = 𝑃 + 𝐼 = 𝑃 + π‘ƒπ‘Ÿπ‘‘ = 𝑃(1 + π‘Ÿπ‘‘)

A = Amount after time t P = Original amount, such as principle e = The natural number (~2.718) r = Rate of growth/loss, e.g. interest rate (15% = 0.15) t = Elapsed time n = Divides time into periods per time unit

e β‰ˆ 2.71828 18284 59045 23536 …

𝑒 = limπ‘›β†’βˆž

(1 +1

𝑛)

𝑛

𝐴 = limπ‘›β†’βˆž

𝑃 (1 +π‘Ÿ

𝑛)

𝑛𝑑= π‘ƒπ‘’π‘Ÿπ‘‘

e = βˆ‘π‘₯𝑛

𝑛 !βˆžπ‘–=0 = 1 +

1

1!+

1

2!+

1

3!+

1

4!+

1

5!+ β‹―

Savings Account Example:

P = $100 r = 8% = 0.08 t = 1 year n = 4 (quarterly)

𝐴 = $100 (1 +0.08

4)

4(1)= $108.24

Savings Account Example:

𝐴 = $100 𝑒0.08(1) = $108.33

If n = 1, A = $108.00 (+0’) Annually If n = 4, A = $108.24 (+24’) Quarterly If n = 12, A = $108.29 (+5’) Monthly If n = 365, A = $108.33 (+4’) Daily If n = ∞, A = $108.33 (+0’) Continuously

Compounded interest after 3 years: 𝐴(3) = 𝑃 (1 + 8%) (1 + 8%) (1 + 8%)

𝐴(3) = 𝑃(1 + 0.08)3 = 1.26 * P

(See calculus derivation on page 2)

𝐴 = 𝑃 (1 +π‘Ÿ

𝑛)

𝑛𝑑

𝑃 = 𝐴

(1 +π‘Ÿπ‘›

)𝑛𝑑

π‘Ÿ = 𝑛 [(𝐴

𝑃)

1𝑛𝑑⁄

βˆ’ 1]

𝑑 = 1

𝑛

ln(𝐴𝑃)

ln (1 +π‘Ÿπ‘›)

n = ?

𝐴 = π‘ƒπ‘’π‘Ÿπ‘‘

𝑃 = 𝐴

π‘’π‘Ÿπ‘‘

π‘Ÿ =1

𝑑ln (

𝐴

𝑃)

𝑑 =1

π‘Ÿln (

𝐴

𝑃)

n = ∞

Page 2: Harold’s Exponential Growth and Decay Cheat Sheet...Harold’s Exponential Growth and Decay Cheat Sheet 16 May 2016 Discrete Continuous 𝐴=𝑃(1+ N J) 𝑛𝑑 𝐴=𝑃 π‘Ÿπ‘‘

Copyright Β© 2014-2016 by Harold A. Toomey, WyzAnt Tutor 2

Calculus Derivation Graphs Assume the rate of growth or decay is proportional to the amount of substance (P).

𝑑𝑃

𝑑𝑑 ∝ 𝑃

𝑑𝑃

𝑑𝑑= π‘˜ 𝑃

Separate variables and integrate:

𝑑𝑃

𝑃= π‘˜ 𝑑𝑑

βˆ«π‘‘π‘ƒ

𝑃 = ∫ π‘˜ 𝑑𝑑

ln|𝑃| = π‘˜π‘‘ + 𝑐

Solve for P(t):

𝑒ln|𝑃| = π‘’π‘˜π‘‘+𝑐

|𝑃| = 𝑒𝑐 π‘’π‘˜π‘‘ = πΆπ‘’π‘˜π‘‘ At t=0 (initial condition):

𝑃(0) = πΆπ‘’π‘˜βˆ—0 = 𝐢 βˆ— 1 = 𝑃0 Therefore,

𝑃(𝑑) = 𝑃0 π‘’π‘˜π‘‘ or

𝐴 = π‘ƒπ‘’π‘Ÿπ‘‘

Left: Exponential Growth (k or r positive) Right: Exponential Decay (k or r negative)

Chemistry Half-Life 𝐴 = π΄π‘šπ‘œπ‘’π‘›π‘‘ π‘Ÿπ‘’π‘šπ‘Žπ‘–π‘›π‘–π‘›π‘” π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘‘π‘–π‘šπ‘’ 𝑑 𝐴0 = π΄π‘šπ‘œπ‘’π‘›π‘‘ π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘€π‘–π‘‘β„Ž π‘Žπ‘‘ π‘‘π‘–π‘šπ‘’ 𝑑 = 0 𝑇 = π»π‘Žπ‘™π‘“ 𝐿𝑖𝑓𝑒 (π‘‘π‘–π‘šπ‘’ 𝑒𝑛𝑖𝑑𝑠) 𝑑 = π‘‘π‘–π‘šπ‘’ (π‘‘π‘–π‘šπ‘’ 𝑒𝑛𝑖𝑑𝑠)

𝐴 = 𝐴0 (1

2)

𝑑𝑇


Top Related