Download - Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

Transcript
Page 1: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

Featurepreserving variational smoothingof terrain data

TolgaTasdizen RossWhitaker

Schoolof Computing Schoolof ComputingUniversityof Utah Universityof Utah

SaltLakeCity, UT 84112 SaltLakeCity, UT 84112e-mail: [email protected] e-mail: [email protected]

Abstract

In this paper, we presenta novel two-step,variationalandfeaturepreservingsmoothingmethodfor terraindata. Thefirst step computesthe field of 3D normal vectors fromthe heightmapandsmoothesthemby minimizing a robustpenaltyfunction of curvature. This penaltyfunction favorspiecewise planarsurfaces;therefore,it is bettersuitedforprocessingterraindatathenpreviousmethodswhichoperateon intensity images. We formulatethe total curvatureof aheightmapasa functionof its normals.Then,the gradientdescentminimization is implementedwith a second-orderpartial differentialequation(PDE) on the field of normals.For thesecondstep,we defineanotherpenaltyfunctionthatmeasuresthe mismatchbetweenthe the 3D normalsof aheightmapmodelandthe field of smoothednormalsfromthefirst step.Then,startingwith theoriginal heightmapastheinitialization,wefit anon-parametricterrainmodelto thesmoothednormalsminimizing this penaltyfunction. Thisgradientdescentminimization is also implementedwith asecond-orderPDE.We demonstratetheeffectivenessof ourapproachwith a ridge/gullydetectionapplication.

1 Intr oduction

Terraindatacontainsinformationthatis pertinentto avarietyof applications.For instance,scientistsestimateslopegradi-entandaspectfor analysisof hydrologicalflow over terrain.Theseestimatesare later usedin flood pathpredictionsforsafetyplanning.Anotherapplicationcouldbetheanalysisoftheterrainof otherplanetsto plana routethatwill be takenby anunmanned,explorationvehicle.However, thelevel au-tomationin thisanalysisis currentlylow andtherefore,thesearemostly time consuming,manualtasks. Standardimageprocessingtechniquesarenot optimal whenappliedto ter-rain data. Therefore,the first stepin a pushtowardsmoreautomatedanalysisshouldbethedevelopmentof processingtechniquesspecificto terraindata.

Terrainsare often representedas a collection of heightmeasurements,i.e. a digital elevation model (DEM). Ele-vationvaluescanbe representedaspoints,contourlinesortriangulatedirregularnetworks. In this paper, we areinter-

estedin terraindatathat is representedon a 2D regular, rec-tilinear grid, i.e. a height image. SuchDEMs areusuallycreatedby stereophotogrammetryfrom aerialphotographs,field surveys,ormostcommonlyby manuallydigitizing con-tourmaps.

DEMs areavailablein many differentforms that vary inaccuracy, andhorizontalandverticalresolution.ThehighestresolutionDEMsdistributedby theUnitedStatesGeologicalSurvey (USGS)correspondto 7.5 minutequadranglemaps(1:24000scale)with horizontalresolutionof 10 or 30 me-ters[20]. Vertical accuracy of theseDEMs varieswith thedesiredmeanerrorof 7 meters,but it is not unusualto haveerrorsof up to 15 meters. The 7.5-MinuteDEMs arecre-atedby optically scanningcontourmapsandthenfitting anapproximatingsurface. Errors can be producedwhen ele-vationsareinterpolatedfrom digitized contours.Therearemany potentialsourcesof errorsthateffectaccuracy andun-certaintyof terrainfeatureanalysisusingDEM data[21].

Someof the necessarytools for analysisof terrain dataareridge detection,segmentationandcompression.All ofthesetools require that we are able to extract featuresofthe terrain such as ridges and gullies in the presenceofnoise. In image processing,Perona& Malik (P&M) in-troducedan anisotropicdiffusion processthat canpreserveedgesbetweendistinct regions while smoothingthe noisewithin the regions[12]. Unfortunately, a direct applicationof this methodto heightmapsyields unsatisfactoryresults,seeSection3. In this paper, we formulatea correctgener-alizationof this methodto heightmapsby posingit asanenergy minimizationproblemon curvature.Thevariationalmethodwe proposeis alsogeometric,i.e. it is independentof theparameterization.

The restof this paperis organizedasfollows. Section2presentsa brief overview of relatedwork in the literature.Section3 discussesedgepreservingsmoothingmethodsinimageprocessing.Section4 formulatesa robust curvatureenergy for

���� D height surfaces. Section5 introducesoursplittingstrategy thatgivesanefficientandstableminimiza-tion procedurefor thisenergy. Section6 illustratesresultsoftheproposedapproachanddemonstratesits advantageswithin the context of a ridge/gully detectionapplication. Sec-tion 7 summarizesthecontributionsof thispaper.

Page 2: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

2 RelatedWork

Perona& Malik introducedthe anisotropicdiffusion PDEfor intensity imagesin their pioneeringwork [12]. Nord-strom[11] andBlack et al. [1] have shown that P&M’sdiffusionis thegradientdescentprocessfor a robustenergyfunction. Otherresearchershave proposeddifferentenergymetrics,suchastotal variation,which yield variationsof theanisotropicdiffusion PDE [14]. Theseapproachesare allsecond-orderPDEs. Tumblin and Turk proposea fourth-orderPDEasa detail preservingcontrastreductionmethodfor depictinghigh contrastimageson low contrastdisplaydevices[19]. TheirLCIS(low curvatureimagesimplifier)al-gorithmis relatedto therobustcurvatureminimizationstrat-egy proposedin this paper. However, their approachis for2D images,whereas,we take into accountthe geometryof���� D heightsurfaces.Furthermore,we provide a variationalgeneralizationof anisotropicdiffusionto suchsurfaces.

A problemrelatedto oursis thesmoothingof 3D surfaces.In the context of level set representations,meancurvatureflow (MCF), a geometricPDE that minimizessurfaceareahasbeena popularchoicefor enforcingsmoothnessof themodel [9, 24]. MCF is not a featurepreservingprocess.Furthermore,it suffersfrom severalproblemsincludingvol-umeshrinkage,pinchingof thin structures.In thecomputergraphicsliterature,smoothingsurfacemesheshasbeenap-proachedasanenergy minimizationproblem[10, 8, 22] andasa filtering problem [17, 4, 7]. More recently, anisotropicdiffusion processeshave beenproposedfor surfacemeshesandlevel sets[3, 13, 16]. Noneof thesemethodsmake useof thespecificpropertiesof

���� D heightsurfaces.Depth reconstructionhas beena major focus in earlier

computervision research[6, 18, 2]. More recently, in thecontext of height maps,a

������ versionof MCF hasbeenderived [23]. Desbrunet al. proposea featurepreservingdenoisingprocessfor heightmaps[5]. Their approachis tousea second-orderflow that is a modificationof MCF thatdoesnot take into accountthegeometryof heightmaps.

3 Edge preserving smoothing for in-tensity images

An establishedsolutionto thesmoothingproblemis to poseit asthegradientdescentof anenergy function,andto imple-mentthegradientdescentasa non-linearpartialdifferentialequation(PDE).Thechoiceof theenergy functiondependson the application,andit determineswhat part of the inputsignalis preservedandwhatpart is eliminatedasa resultofthegradientdescentPDE.In imageprocessing, it is typicalto usean energy that favors smoothness.For instance,theheatequationimplementsthegradientdescentfor themini-mizationof the integral of a quadraticpenaltyon the imagegradientmagnitude���� ���������� ������������ � ��� � �"!#�$�&% (1)

0 0.5 1 1.5 20

1

2

3

4

|x|

Quadraticpenalty

Robustpenalty

Figure1: Comparisonof quadraticandrobustpenaltyfunc-tions.

where ' is the domainof the image. Processingan imagewith the heatequationis mathematicallyequivalentto con-volving it with a Gaussiansmoothingkernel. It is a wellknown fact thatsuchsmoothingblursboundariesin the im-age,andwill goto aconstantintensitylevel in thelimit. Thisresultis alsoexpectedfrom thevariationalpointof view, be-causethe quadraticpenaltyfunction, seeFigure1(a), doesnot permit thepresenceof high gradientmagnitudeoutliers(edges).Figure2(a) illustratesa surfacedescribedby a partof the Mt.Hood DEM. Figure2(b) illustratesthe resultsoftreating this data as an intensity image and smoothingitwith a Gaussiankernel. The ridgesin the original dataareroundedanddistorted.

In theirseminalwork, Perona& Malik (P&M) introduceda non-linear, anisotropicdiffusion PDE that can preserveedgeswhile smoothingnoise[12]. This methodhasgainedpopularityasa successfuledgedetectionmethodin imageprocessing.Nordstrom[11] andBlack et al. [1] show thatP&M anisotropicdiffusionPDEis thegradientdescentfor arobustenergy function:���� �)(+*-,�.0/21435/768 6 ��������� � ��� � �"!�9 ,�.0/21&35/768 6 �$��:<;

(2)This robust penalty function, seeFigure 1(b), is boundedfor high valuesof its argument; therefore, it allows thepresenceof a limited number of outliers. Indeed, theP&M anisotropicdiffusion hasbeenshown to converge toa piecewise-constantsolution, i.e. a solution that haszerogradientat mostlocationsanda limited numberof locationswith highgradientmagnitude.Shockformationatedgesandsmoothingof detailsat otherlocationsis themechanismbywhich the solution is achieved. The parameter= controlsthe degreeof edgepreservation; however, it is not a sim-ple threshold.Pointswith gradientmagnitudeslessthan =mayform shocksandbeincorporatedinto edgesin thepres-enceof many pointswith stronggradientsnearby. On theother hand,isolatedpoints with large gradientmagnitudeswill besmoothed.Motivatedby this successfulmethod,oneapproachto smoothinga heightmap is to treat it asan in-tensityimageandapplyP&M anisotropicdiffusiondirectly.

Page 3: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

Figure2(c)illustratestheproblemswith thisapproach;P&Manisotropicdiffusioncausesa “staircasing”effect. This ef-fecthasbeendocumentedin [25, 19] andis causedby shocksforming at seeminglyrandomlocationsin regionsof high,uniformgradientmagnitude,e.g.theslopesof amountaininterraindata.

4 Feature preserving smoothing forheight maps

The original P&M anisotropicdiffusion fails whenappliedto terraindataasshown in Figure2(c), becauseit wasde-signedto preserve andcreate>0? discontinuitiesin intensityimagesto detectedges.However, >0? discontinuitiesareveryrarein terraindata,they occuronly on verticalclif fs. In ter-rain data,one is insteadinterestedin ridgeswhich are > �discontinuities.Wewould like to find aprocessthatrespects> � continuousregionssuchastheslopesof a mountainandpreservesandcreates> � discontinuities.

Let usconsiderthe parametricsurface @ definedby theheightmap @BA � % ��CD� A � % � %FE A � % ��CGC ; (3)

Theareaof this surfaceover thedomain ' is computedasH A E CI� ��J (LK ���E A � % ��C � � ������ ; (4)

The gradientdescentPDE on the first variationof this areais� ENM �� $� �O! A �$ENM J (LK ���$EP� � C , which wasusedfor

smoothing� �� D surfaces[23]. This PDE is the MCF for

heightmaps.It hastheappearanceof beinganisotropicdueto the division by

J (LK �+�EQ� �beforethe divergenceop-

eration.However, this is nota featurepreservinganisotropicprocess.The rescalingis the projectionof the 3D motionontotheimageplanewhich is aresultof representingthe3Dsurfaceasa2D graph.

Explicitly preserving> � discontinuitiesrequiresapenaltytermonthesecond-orderstructureof surfaces,i.e. curvature.We proposea family of energies that are surfaceintegralsof penaltyfunctionson total curvature, R �S A � % ��C , which isthe sumof the squaresof the two principal curvatures.LetTVU�WYXZW

beanarbitrarypenaltyfunction,thenwe definethefollowing family of energy functions[ A E CD� � T A\R S A � % ��CGC J (]K ���E A � % ��C � � ������� ; (5)

Notice that ifT A\R S C�� (

, this energy reducesto the areaof @ . We can penalizethe integral of total curvaturebychoosing

T A\R S C^� R �S . However, similar to heatflow inimageprocessing,this energy doesnot preserve discontinu-ities becausethequadraticpenaltyfunctiondoesnot permitany outliers. Instead,we usethepenaltyfunction thatgivesriseto P&M diffusionin (1), but replacethe imagegradientmagnitudewith total curvature:T A\R S CD� (+*-, .�_ 6`8 6 ; (6)

Theparameter= determinestherangeof curvaturesthatarepreserved. Figure 2(d) illustratesthe resultsof smoothingtheMt. Hooddatasetusingthis energy definition.

5 A splitting strategy

A direct minimizationof the energy definedin (5) requiressolving a fourth-orderPDE. This is a computationallyex-pensive andunstabletask. In this section,we introduceastrategy thatsplitsthesolutioninto apairof coupledsecond-orderPDEsthatcanbesolvedefficiently.Step1a: Total curvature fr om normal vector variationsThefirst stepin our splitting strategy is to expresstotal cur-vature R �S in termsof thenormalvectorsto theparametricsurface@ . Thenormalvectorto @ canbefoundasa � (b (�K E �c K E �dfeg E cE d*h(jik %

(7)

whereE c

andE d

denotethex andy partialderivativesof theheightmap

E. Letsdefinethe l^m � matrixof thegradientof

thenormalvectorsin theimageplane� a �On a c % a dpo ;(8)

Also definethe� ml matrix thatprojects

� ainto 3D spaceq � (n (�K E �c K E �d osr5t � 9 (�K E �d * E c E d E c* E c E d (�K E �c E d : ; (9)

The variation of the normal vectorsintrinsic to the heightmapsurfaceis

�u a � � avq. Thentotal curvaturecanbe

foundas R �S � ��� u a � � %(10)

wherethe norm denotesthe Frobenius norm of the lwmxlmatrix,which is thesquareroot of thesumof thesquaresofall of thematrix elements.Step1b: Decouplingthe normals fr om the height mapThe secondstepin our strategy is to decouplethe normalvectorsfrom thesurfacedefinedby theheightmap. Substi-tuting (10) in (5) gives[ A a CI� �� T A �+� u a � Czy A � % ��C{������� % (11)

wherey A � % ��CI� J (LK �+�$E A � % ��C � � . We initialize thenor-

mal vectorsaccordingto (7). Thenwe fixE

andprocessthenormalvectorsto minimize the energy (11). Sincenormalvectorshaveto remainunit length,this is aconstrainedmin-imizationproblem,which is accomplishedby thefollowingsecond-orderPDEon thenormalvectors:| a| � * A2} * a�~xa C ��! A y A � % ��C Th� A �+�$u a � C �u a C %

(12)where

~denotesthetensorproduct,and

T �is thederivative

ofT

. Theoperator} * a�~-aprojectsthechangevectorto

Page 4: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

(a) (b) (c) (d)

Figure2: (a)A portionof the� �� D surfacedefinedby theMt. HoodDEM, (b) Gaussiansmoothingof theheightimage,(c)

P&M diffusionon theheightimage,and(d) ourgeneralizationof P&M diffusionto� �� D surfaces.

(a)

(b)

Figure 3: (a) An imageof noisy unit vectors,and (b) theresultof minimizing therobustcurvatureenergy.a

ontotheplaneperpendiculartoa

, thusenforcingthatthenormalvectorsremainunit length.

This PDE is the generalizationof P&M anisotropicdif-fusion for a field of unit vectorsdefinedon a

� �� surface.Figure3(a)illustratesanartificial imageof noisyunit lengthvectors. The vectorswerechosento have a differentmeaneachquadrantof the image. Figure 3(b) illustratesthe re-sultsof smoothingthis vectorimagewith thePDE(12) andwith

Tasdefinedin (6). Thediscontinuitiesin thenormals

betweenthe quadrantsarepreservedwhile the noisewithinthequadrantsis smoothed.Step2: Refitting the height map to the normal vectorsSinceourgoalis to denoisetheheightmap,wehaveto relatetheprocessingof thenormalvectorsbackto thesurface.Wedo this with a refitting stepthat minimizesan energy thatreflectsthediscrepancy betweentheheightmapsurfaceand

Noisy�height�map

Compute�N from�h Process�N Process�h

Done?No

Smoothed�height�map

Figure4: Flow chart.

theprocessednormalvectors.Thisenergy is� A E C�� �� a u ! a uh* a u ! a)� ������� % (13)

wherea u

anda)�

denotethenormalvectorscomputedfromEaccordingto (7) and the processednormal vectorsob-

tainedfrom iteratingthePDE(12), respectively. Leta � �n�� � � � � r o#� , then� A E CI� �� J (]K ���EP� � * �E!�9 � �� � : K � r ������� ;

(14)Thegradientdescentfor thefirst variationof thisenergywithrespectto

Eis� E�� � * ��!�� �EJ (LK �+�EQ� � *�9 � �� � :�� ; (15)

5.1 The algorithm

Theflow chartfor the algorithmis shown in Figure4. Thenormalsprocessingstageof thealgorithmcomputesthegra-dientdescentfor the normals(12) for a fixed numberof it-erations(25 for the experimentsin this paper). Hence,weavoid evolving evolving thenormalstoo faraway from theirinitializationfrom

E. Theheightmapfitting to theprocessed

normalvectorsis given asa gradientdescentPDE in (15).Thisstageof thealgorithmis rununtil thediscrepancy mea-sure(13) betweenthe new normalsandthe normalsof the

Page 5: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

height mapceasesto decrease,which signalsthe needforanotherroundof processingthenormalvectors.Theoverallalgorithmrepeatsthesetwo stepsto denoisetheinputheightmap. This algorithmconsistsof solving two second-orderPDEsin seriesinsteadof a direct fourth-orderPDE,whichmakesit computationallytractable.

5.2 The parameters

Therearetwo free parametersin our algorithm: = andthenumberof iterationsof themain loop in Figure4. Thecon-ductanceparameter= determinestherangeof curvaturesthatis smoothedandtherangethatis preserved.As in P&M im-agediffusion,it is notasimplethreshold.In wasfixedat � ; (for all of the resultsshown in this paper. Unlike, in P&Mimagediffusion,this parameterdoesnot needto bechangedfor differentsurfacemodels. In the context of P&M imagediffusion,theunitsof = arein graylevels;consequently, theoptimal choiceof = is imagedependent.However, for sur-faces,theunitsarein curvature,which is dataindependent.This makesit possibleto choosea = valuethatgivesconsis-tentresultsoverabroadrangeof surfaces.

The numberof times we repeatthe main loop (process-ing thenormalvectorsfollowedby refitting) determinestheamountof smoothingappliedto thedata.This is thesecondfreeparameterin thesystem.In Section6, wepresentexper-imentalresultsthatillustratevariousamountsof smoothing.Thisparametercouldbeexchangedfor adatatermweightbyposingthesmoothingproblemasa reconstructionproblem.In a reconstructionproblemthe energy will be a weightedsum of a smoothnessterm and a data term. A PDE thatminimizesthis typeof energy is run until convergence,andthefreeparameteris therelative weightingbetweenthetwoterms.

6 Experiments

In this section,we presentexperimentswith two differentDEM datasets.We demonstratetheeffectivenessof our ap-proachas a pre-processingstep for ridge/gully detection.Therearemultiple definitionsof a ridge. For terraindata,weconsideraridgeto bepointsof localmaximumcurvatureon the isocurvesof the heightfunction

E A � % ��C . The curva-tureof theisocurvesof

E A � % ��C canbefoundasR � E �d E c�c * � E c E d E c#d K E �c E djdn E �c K E �d osr5t � ;(16)

Let � bethetangentvectorto theisocurvesofE A � % ��C . Then

point of maximalcurvatureof theisocurvesarefoundasthezerocrossingsof thefollowing directionalderivative:� R� � � � ; (17)

Among points that satisfy this equation,thosewith R��O�areridgesandthosewith R���� aregullies.

The main point of this discussionis not the ridge detec-tion itself, but therole of our smoothingalgorithmasa pre-processingstep. Equation(17) involvesthird derivativesofE A � % ��C ; therefore,it is hard to computestably. Typically,thesethird derivativesof Gaussiankernelsareusedfor thiscomputation.However, theGaussiankernelseliminatesanddislocatesridgelines.WeproposethatlikeP&M diffusionisa betterchoicethanGaussiansmoothingfor edgedetectionin intensityimages,our anisotropicsmoothingalgorithmisa better approachfor smoothingthe data for purposesofridge/gullydetection.

Figure5(a) illustratesthe surfacedefinedby the original( � �p� m ( � �]� Mt. Hoodheightdata. Figure5(b) and(c) il-lustratetheresultsof smoothingwith theproposedapproachafter2 and10 iterationsof our algorithm,respectively. Oneiterationtakesapproximately20 minutesfor this datasetona Intel 1.7 Ghz processor. For denoisingpurposesa cou-ple of iterationsaresufficient. More iterationsstartforcingthe surfacetowardsbeingpiecewiseplanar. The prominentstructureof the mountainis preserved as the smallerscaledetailandnoiseis eliminated.Thiscanbeperformedaspre-processingfor ridgedetectionor compression.

Figure6 illustratesthe ridge/gully detectionexperiment.Theblueandtheredcurveson thesurfacedepictridgesandgullies, respectively. For the resultsshown in the top row,we useda Gaussiansmoothingkernelwith a low anda highstandarddeviation. The low standarddeviation did not de-noisethedataenough;hence,therearealot of falsepositivesin thedetectionresults.Ontheotherhand,thehighstandarddeviation Gaussianresultedin too many falsenegatives,i.e.missedridges. Figures6(c) and(d) illustratedetectionre-sultsobtainedby usingtheproposedanisotropicdiffusionasthesmoothingstep(after10 and20 iterations,respectively).The resultsaremuchbetterthanwith Gaussiansmoothing.For instance,the prominentridge runningdown the centerright sideof themountainwasmissedin both low andhighstandarddeviation Gaussiansmoothingresults. In contrast,this ridge was able to self-organizeand strengthenduringanisotropicdiffusionandwassuccessfullydetected.In sum-mary, the detectionresultswith anisotropicdiffusion havefewer falsepositivesand fewer falsenegatives.

Figure 7 illustratesa different type of terrain: the tran-sition from a flat valley to rolling hills. Two shallow riverbedscan be observed as depressionsin the valley. Fig-ure 7 (a) shows the original height surface,while (b) and(c) show the surfaceafter 1 and10 iterationsof our algo-rithm. Figures7(d)-(f) illustrate the correspondingdetec-tion results.Although,only aminimalamountof smoothingcanbeobservedin Figure7(b), thecorrespondingdetectionresult shown in Figure 7(e) is much betterthan the detec-tion from the original datain Figure7(d). Notice thatbothof the shallow river bedsweredetectedasgullies. Furtheranisotropicsmoothingresultsin acleanerdetection,but alsolossesthe weaker river bed. The processingtimes for thissmallerdatasetwasapproximately3 minutesper iterationona Intel 1.7 Ghz processor.

Page 6: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

(a) (b) (c)

Figure5: (a)Mt. Hood,(b) after2 iterations,and(c) 10 iterationsof themainprocessingloop.

(a) (b)

(c) (d)

Figure6: Ridgeandgulliesaredepictedby blueandredcurves,respectively. ResultsusingGaussiankernelswith standarddeviation (a)1 pixel and(b) 3 pixels.Resultsusingour anisotropicsmoothingwith (c) 10 iterations,and(d) 20 iterations.

Page 7: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

(a) (b) (c)

(d) (e) (f)

Figure7: (a) Original data,(b) after 1 iterations,and(c) 10 iterationsof our algorithm. Ridges(blue) andgullies (red)detectedfrom therespectivedatasetson thefirst row.

7 Conclusions

We derive a variationalgeneralizationof P&M anisotropicdiffusion for featurepreservingsmoothingof terrain data.Theproposedmethodis derivedfrom thegeometryof

� �� Dsurfaces.It preservesandenhancesdiscontinuitiesin thesur-facenormalvectors;hence,forcing surfacestowardspiece-wise smoothness.This type of processingis bettersuitedto terraindatathandirect applicationsof imageprocessingtechniquesandtheirheuristicmodifications.

Measureson surface normal variations require solvingfourth-orderPDEson level sets. However, by processingthenormalsseparatelyfrom thesurface,we cansolve a pairof second-orderequationsinsteadof a fourth-orderequa-tion. This methodis numericallymore stableandcompu-tationally lessexpensive thansolving the fourth-orderPDEdirectly. The shortcomingof this methodis the computa-tion time; however, the processlendsitself to parallelism,and therefore,the useof multi-threading. Also, recentde-velopmentsin solvingnonlinearimagePDEon commoditygraphicshardwarepromisesignificantspeed-upsfor our al-gorithm[15].

Acknowledgements

This work is supportedin part by ONR (#N00014-01-10033), NSF (#CCR0092065)and ARO (DAAD19-01-1-0013).

References[1] M. J.Black,G.Sapiro,andD. H. Marimont.Robustanisotropicdiffu-

sion. IEEE Transactions on Image Processing, 7(3):421–432,March1998.

[2] A. Blake andA. Zisserman.Visual Reconstruction. MIT Press,1987.

[3] U. Clarenz,U. Diewald, andM. Rumpf. Anisotropicgeometricdif-fusion in surfaceprocessing.In Proceedings of IEEE Visualization,pages397–405,2000.

[4] M. Desbrun,M. Meyer, M. Schroder, andA. Barr. Implicit fairing ofirregular meshesusingdiffusion andcurvatureflow. In Proceedingsof SIGGRAPH’99, pages317–324,1999.

[5] M. Desbrun,M. Meyer, P. Schroder, and A. H. Barr. Anisotropicfeature-preservingdenoisingof height fields and bivariatedata. InGraphics Interface, 2000.

[6] W. E. L. Grimson. From images to surfaces: A comp. study of thehuman early vision system. MIT Press,1981.

[7] I. Guskov, W. Sweldens,andP. Schroder. Multiresolutionsignalpro-cessingfor meshes. In Proceedings of SIGGRAPH’99, pages325–334,1999.

[8] M. Halstead,M. Kass,andT. DeRose. Efficient, fair interpolationusingcatmull-clarksurface.In Proceedings of SIGGRAPH’93, pages35–44,1993.

[9] Ravikanth Malladi, JamesA. Sethian,andBabaC. Vemuri. Shapemodelingwith front propagation:A level setapproach.IEEE Trans.on PAMI, 17(2):158–175,1995.

[10] H. P. MoretonandC. H. Sequin.Functionaloptimizationfor fair sur-facedesign.In Proceedings of SIGGRAPH’92, pages167–176,1992.

[11] N. Nordstrom.Biasedanisotropicdiffusion—aunifiedregularizationanddiffusion approachto edgedetection. Image and Vision Comp.,8(4):318–327,1990.

Page 8: Feature preserving variational smoothing of terrain dataTerrain data contains information that is pertinent to a variety of applications. For instance, scientists estimate slope gradi-ent

[12] P. Peronaand J. Malik. Scale spaceand edge detection usinganisotropicdiffusion. IEEE Trans. on Pattern Analysis and MachineIntelligence, 12(7):629–639,July 1990.

[13] T. PreuerandM. Rumpf.A level setmethodfor anisotropicgeometricdiffusion in 3d imageprocessing.SIAM J. Appl. Math., 62(5):1772–1793,2002.

[14] L. Rudin, S. Osher, andC. Fatemi. Nonlineartotal variationbasednoiseremoval algorithms.Physica D, 60:259–268,1992.

[15] M. Rumpf and R. Strzodka. Nonlineardiffusion in graphicshard-ware.In Proceedings of EG/IEEE TCVG Symposium on VisualizationVisSym ’01, pages75–84.Springer, 2001.

[16] T. Tasdizen,R. Whitaker, P. Burchard,andS. Osher. Geometricsur-facesmoothingvia anisotropicdiffusionof normals.In IEEE Visual-ization Proceedings, pages125–132,2002.

[17] G. Taubin. A signalprocessingapproachto fair surfacedesign. InProceedings of SIGGRAPH’95, pages351–358,1995.

[18] D. Terzopoulos.Multiresolution Computation of Visible-Surface Rep-resentations. PhDthesis,MIT, 1987.

[19] J. Tumblin and G. Turk. Lcis: A boundaryhierarchyfor detail-preservingcontrastreduction.In SIGGRAPH’98 Conference Proceed-ings, pages83–90,1999.

[20] U.S.GeologicalSurvey. http://www.usgs.gov. 807NationalCenter,Reston,VA 20192,USA.

[21] Jeffrey P. Walker andGarry R. Willgoose. On the effect of digitalelevation modelaccuracy on hydrologyandgeomorphology. WaterResources Research, 35(7):2259–2268,1999.

[22] W. WelchandA. Witkin. Free-formshapedesignusingtriangulatedsurfaces.In Proceedings of SIGGRAPH’94, pages247–256,1994.

[23] R. Whitaker. On the reconstructionof height functionsand terrainmapsfrom dense3Ddata.In IEEE International Conference on ImageProcessing, 2001.

[24] RossT. Whitaker. A level-setapproachto 3D reconstructionfromrangedata.Int. J. Computer Vision, 29(3):203–231,1998.

[25] RossT. Whitaker andStephenM. Pizer. A multi-scaleapproachtononuniformdiffusion. Computer Vision, Graphics, and Image Pro-cessing: Image Understanding, 57(1):99–110,January1993.