Download - EULAG-MHD: simulation of global solar dynamo

Transcript
Page 1: EULAG-MHD: simulation of global solar dynamo

NCAREULAG-MHD: simulation of global solar dynamo

*National Center for Atmospheric Research, Boulder, Colorado, U.S.A.

Piotr K Smolarkiewicz*,

http://www.mmm.ucar.edu/eulag/

Page 2: EULAG-MHD: simulation of global solar dynamo

NCAR

Toroidal component of B in the uppermost portion of the stable layer underlying the convective envelope at r/R≈0 .7

Page 3: EULAG-MHD: simulation of global solar dynamo

NCAR

Mihai Ghizaru, Paul Charbonneau, PK Smolarkiewicz, MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION,

The Astrophysical Journal Letters, 715:L133–L137, 2010;

R. Bhattacharyya, B.C. Low, and P.K. SmolarkiewiczOn spontaneous formation of current sheets: Untwisted magnetic fields.

PHYSICS OF PLASMAS 17, 112901 2010

Etienne Racine, P Charbonneau, M Ghizaru, Amelie Bouchat, PK Smolarkiewicz, ON THE MODE OF DYNAMO ACTION IN A GLOBAL LARGE-EDDY SIMULATION OF SOLAR CONVECTION,

The Astrophysical Journal, 735:46 (22pp), 2011;

Patrice Beaudoin, P. Charbonneau, E. Racine, P.K. Smolarkiewicz, Torsional Oscillations in a Global Solar Dynamo,

Solar Physics (2012) in press http://arxiv.org/abs/1210.1209

Piotr K Smolarkiewicz, Paul Charbonneau EULAG, a Computational Model for Multiscale Flows: an MHD Extension

Journal of Computational Physics, submitted

Page 4: EULAG-MHD: simulation of global solar dynamo

NCAR

Standard anelastic equations of solar magnetohydrodynamics

Brun, Miesch & Toomre,

Page 5: EULAG-MHD: simulation of global solar dynamo

NCAR

Elemental EULAG formulation

; Bauer, 1908

Page 6: EULAG-MHD: simulation of global solar dynamo

NCAR

Coordinate dependent form

Page 7: EULAG-MHD: simulation of global solar dynamo

NCAR

Coordinate dependent form

Page 8: EULAG-MHD: simulation of global solar dynamo

NCAR

Numerical approximations; background

elliptic problems for potentials

Page 9: EULAG-MHD: simulation of global solar dynamo

NCAR

Specialized MHD implementation

Hydrodynamic block

Page 10: EULAG-MHD: simulation of global solar dynamo

NCAR Magnetic block

Thermodynamics

Page 11: EULAG-MHD: simulation of global solar dynamo

NCAR

Model setups

stable up to and unstable stable aloft

Page 12: EULAG-MHD: simulation of global solar dynamo

NCARPower of ILES

Page 13: EULAG-MHD: simulation of global solar dynamo

NCAR

Page 14: EULAG-MHD: simulation of global solar dynamo

NCAR

Magnetic cycles

Page 15: EULAG-MHD: simulation of global solar dynamo

NCARMode of large-scale dynamo action

Page 16: EULAG-MHD: simulation of global solar dynamo

NCAR

Page 17: EULAG-MHD: simulation of global solar dynamo

NCARRemarks

Notwithstanding some departures from the real solar climate, global MHD simulations of solar-like cycles have landed.

EULAG-MHD offers an outstanding virtual MHD laboratory allowing to address quantitatively a number of questions that could until now only be speculatedupon on the basis of simplified model formulations.

There is much to be learned. For example, our calculations suggest that the entire magnetic variability involves less then 10% of solar luminosity connection to physics of other “dissipative structures” (QBO, MJO, ….)

Numerics-wise we have learned that work of elliptic solvers is adaptive rather than additive

Page 18: EULAG-MHD: simulation of global solar dynamo

NCAR Deriving the entropy equation

Page 19: EULAG-MHD: simulation of global solar dynamo

NCARWhat is A operator?

Multidimensional positive definite advection transport algorithm (MPDATA):