Download - ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

Transcript
Page 1: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

1   ECE  340  Homework  #8  Solutions  

 

ECE 340: PROBABILISTIC METHODS IN ENGINEERING

SOLUTIONS TO HOMEWORK #8

5.1

a) A sample space may be defined as S={0,1,2}2, consisting of all the ordered pairs for which the first component is the total heads for Michael and the second component is the total heads for Carlos. The sample space S is shown in the table below.

# of heads of M #of heads of C

0 1 2

0 00 01 02

1 10 11 12

2 20 21 22

The range SXY = {(0,0), (1,0), (1,1), (2,0), (2,1), (2,2)} is shown in the second table below. Note that we can also put

S!"  =   { x, y :βˆ€   x, y ∈   0,1,2 !  and  x   β‰₯  y}

# of heads of M #of heads of C

0 1 2

0 (0,0) (1,0) (2,0)

1 (1,0) (1,1) (2,1)

2 (2,0) (2,1) (2,2)

The mapping from S to SXY can be shown as the following: 00 (0,0) 01 (1,0) 10 (1,0) 02 (2,0) 20 (2,0) 11 (1,1)

Page 2: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

2   ECE  340  Homework  #8  Solutions  

 

12 (2,1) 21 (2,1) 22 (2,2)

b)

𝑃 𝑋,π‘Œ = (0,0) = 𝑃 00 = 𝑃{𝑇𝑇𝑇𝑇} =12

!=

116

𝑃 𝑋,π‘Œ = (1,0) = 𝑃 10, 01 = 𝑃 𝐻𝑇𝑇𝑇,𝑇𝐻𝑇𝑇,𝑇𝑇𝑇𝐻,𝑇𝑇𝐻𝑇 =12

!Γ—4 =

14

𝑃 𝑋,π‘Œ = (2,0) = 𝑃 02, 20 = 𝑃 𝑇𝑇𝐻𝐻,𝐻𝐻𝑇𝑇 =12

!Γ—2 =

18

𝑃 𝑋,π‘Œ = (1,1) = 𝑃 11 = 𝑃 𝐻𝑇𝐻𝑇,𝐻𝑇𝑇𝐻,𝑇𝐻𝑇𝐻,𝑇𝐻𝐻𝑇 =12

!Γ—4 =

14

𝑃 𝑋,π‘Œ = (2,1) = 𝑃 12, 21 = 𝑃 𝐻𝑇𝐻𝐻,𝑇𝐻𝐻𝐻,𝐻𝐻𝐻𝑇,𝐻𝐻𝑇𝐻 =12

!Γ—4 =

14

𝑃 𝑋,π‘Œ = (2,2) = 𝑃 22 = 𝑃 𝐻𝐻𝐻𝐻 =12

!=

116

c) 𝑃 𝑋 = π‘Œ

= 𝑃 𝑋,π‘Œ = 0,0                  +  π‘ƒ 𝑋,π‘Œ = 1,1                +𝑃   𝑋,π‘Œ = 2,2

=116

+14+116

=38

d) If 𝑃 β„Žπ‘’π‘Žπ‘‘π‘  = !! for Carlos , then

𝑃 𝑋,π‘Œ = (0,0) = 𝑃 00 = 𝑃{𝑇𝑇𝑇𝑇} = !!

!Γ— !

!

!= !

!"

𝑃 𝑋,π‘Œ = (1,0) = 𝑃 10, 01 = 𝑃 𝐻𝑇𝑇𝑇,𝑇𝐻𝑇𝑇,𝑇𝑇𝑇𝐻,𝑇𝑇𝐻𝑇

=14Γ—34Γ—

12

!  Γ—2 +

14

!Γ—

12

!Γ—2 =

18

𝑃 𝑋,π‘Œ = (2,0) = 𝑃 02, 20 = 𝑃 𝑇𝑇𝐻𝐻,𝐻𝐻𝑇𝑇 =14

!Γ—

12

!+

34

!Γ—

12

!=1064

=532

𝑃 𝑋,π‘Œ = (1,1) = 𝑃 11 = 𝑃 𝐻𝑇𝐻𝑇,𝐻𝑇𝑇𝐻,𝑇𝐻𝑇𝐻,𝑇𝐻𝐻𝑇 =1264

𝑃 𝑋,π‘Œ = (2,1) = 𝑃 12, 21 = 𝑃 𝐻𝑇𝐻𝐻,𝑇𝐻𝐻𝐻,𝐻𝐻𝐻𝑇,𝐻𝐻𝑇𝐻 =2464

𝑃 𝑋,π‘Œ = (2,2) = 𝑃 22 = 𝑃 𝐻𝐻𝐻𝐻 =964

𝑃 𝑋 = π‘Œ = 𝑃 𝑋,π‘Œ = 0,0  +  π‘ƒ 𝑋,π‘Œ = 1,1  + 𝑃   𝑋,π‘Œ = 2,2 = !!

!"

Page 3: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

3   ECE  340  Homework  #8  Solutions  

 

5.3   The  input  X  to  a  communications  channel  is  β€œ-­‐1”  or  β€œ1”,  with  respective  probabilities  ΒΌ  and  ΒΎ.  The  output  of  the  channel  Y  is  equal  to:  the  corresponding  input  X  with  probability  1  β€“  p  -­‐  pe;  -­‐X  with  probability  p;  0  with  probability  pe.  

  a)    

    X     1-­‐p-­‐pe       Y     1/4   -­‐1           -­‐1         p     pe                 0         p     pe  

3/4   1           1           1-­‐p-­‐pe  

S  =  SXY  =  {(-­‐1,-­‐1),  (-­‐1,0),  (-­‐1,1),  (1,-­‐1),  (1,0),  (1,1)}  

 

b)    

  P((X,Y)  =  (-­‐1,-­‐1))  =  P{X  =  -­‐1  &  Y  =  -­‐1}  =  P{Y  =  -­‐1|X  =  -­‐1}  X  P[X  =  -­‐1]  =  (1-­‐p-­‐pe)(1/4)  =  1/4(1-­‐p-­‐pe)  

  P((X,Y)  =  (-­‐1,0))  =  P{X  =  -­‐1  &  Y  =  0}  =  P{Y  =  0|X  =  -­‐1}  X  P[X  =  -­‐1]  =  (pe)(1/4)  =  1/4pe  

  P((X,Y)  =  (-­‐1,1))  =  P{X  =  -­‐1  &  Y  =  1}  =  P{Y  =  1|X  =  -­‐1}  X  P[X  =  -­‐1]  =  (p)(1/4)  =    1/4p  

  P((X,Y)  =  (1,-­‐1))  =  P{X  =  1  &  Y  =  -­‐1}  =  P{Y  =  -­‐1|X  =  1}  X  P[X  =  1]  =  (p)(3/4)  =  3/4p  

  P((X,Y)  =  (1,0))  =  P{X  =  1  &  Y  =  0}  =  P{Y  =  0|X  =  1}  X  P[X  =  1]  =  (pe)(3/4)  =  3/4pe  

  P((X,Y)  =  (1,1))  =  P{X  =  1  &  Y  =  1}  =  P{Y  =  1|X  =  1}  X  P[X  =  1]  =  (1-­‐p-­‐pe)(3/4)  =  3/4(1-­‐p-­‐pe)  

  c)    

  P[X  β‰   Y]  =    1  -­‐  P[X  =  Y]  =  1  β€“  [P(1,1)  +  P(-­‐1,-­‐1)]  =  1  β€“  [3/4(1-­‐p-­‐pe)  +  1/4(1-­‐p-­‐pe)]  =  1-­‐(1-­‐p-­‐pe)  =  p+pe  

  P[Y  =  0]  =  P((X,Y)  =  (-­‐1,0))  +  P((X,Y)  =  (1,0))  =  P{X  =  -­‐1  &  Y  =  0}  +  P{X  =  1  &  Y  =  0}  

    =  P{Y  =  0|X  =  -­‐1}  X  P[X  =  -­‐1]  +  P{Y  =  0|X  =  1}  X  P[X  =  1]  =  (pe)(1/4)  +  (pe)(3/4)  =  pe  

Page 4: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

4   ECE  340  Homework  #8  Solutions  

 

5.8 a)

d)

g)

h)

Page 5: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

5   ECE  340  Homework  #8  Solutions  

 

5.9

a) and b) We show the joint pmf of 𝑋,π‘Œ below by identifying the probability mass at the values π‘₯! , 𝑦! in the plane. We show the associated marginal pmfs of X and Y along the corresponding margins.

pX(0)  =  P[X  =  0]  =  pXY(0,0)  =  1/16   pX(1)  =  P[X  =  1]  =  pXY(1,0)  +  pXY(1,1)  =  ΒΌ  +  ΒΌ  =  1/2  

  pX(2)  =  P[X  =  2]  =  pXY(2,0)  +  pXY(2,1)  +  pXY(2,2)  =  1/8  +  ΒΌ  +  1/16  =  7/16  

pY(0)  =  P[Y  =  0]  =  pXY(0,0)  +  pXY(1,0)  +  pXY(2,0)  =  1/16  +  ΒΌ  +  1/8  =  7/16  

  pY(1)  =  P[Y  =  1]  =  pXY(1,1)  +  pXY(2,1)  =  ΒΌ  +  ΒΌ  =  1/2  

  pY(2)  =  P[Y  =  2]  =  pXY(2,2)  =  1/16  

c)

𝑃 𝑋,π‘Œ = (0,0) = 𝑃 00 = 𝑃{𝑇𝑇𝑇𝑇} =14

!Γ—

12

!=

164

𝑃 𝑋,π‘Œ = (1,0) = 𝑃 10, 01 = 𝑃 𝐻𝑇𝑇𝑇,𝑇𝐻𝑇𝑇,𝑇𝑇𝑇𝐻,𝑇𝑇𝐻𝑇

=14Γ—34Γ—

12

!  Γ—2 +

14

!Γ—

12

!Γ—2 =

18

𝑃 𝑋,π‘Œ = (2,0) = 𝑃 02, 20 = 𝑃 𝑇𝑇𝐻𝐻,𝐻𝐻𝑇𝑇 =14

!Γ—

12

!+

34

!Γ—

12

!=1064

=532

𝑃 𝑋,π‘Œ = (1,1) = 𝑃 11 = 𝑃 𝐻𝑇𝐻𝑇,𝐻𝑇𝑇𝐻,𝑇𝐻𝑇𝐻,𝑇𝐻𝐻𝑇 =1264

𝑃 𝑋,π‘Œ = (2,1) = 𝑃 12, 21 = 𝑃 𝐻𝑇𝐻𝐻,𝑇𝐻𝐻𝐻,𝐻𝐻𝐻𝑇,𝐻𝐻𝑇𝐻 =2464

𝑃 𝑋,π‘Œ = (2,2) = 𝑃 22 = 𝑃 𝐻𝐻𝐻𝐻 =964

Page 6: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

6   ECE  340  Homework  #8  Solutions  

 

pX(0)  =  P[X  =  0]  =  pXY(0,0)  =  1/64  

  pX(1)  =  P[X  =  1]  =  pXY(1,0)  +  pXY(1,1)  =  8/64  +  12/64  =  20/64  

  pX(2)  =  P[X  =  2]  =  pXY(2,0)  +  pXY(2,1)  +  pXY(2,2)  =  10/64  +  24/64  +  9/64  =  43/64  

pY(0)  =  P[Y  =  0]  =  pXY(0,0)  +  pXY(1,0)  +  pXY(2,0)  =  1/64  +  8/64  +  10/64  =  19/64  

  pY(1)  =  P[Y  =  1]  =  pXY(1,1)  +  pXY(2,1)  =  12/64  +  24/64  =  36/64  

  pY(2)  =  P[Y  =  2]  =  pXY(2,2)  =  9/64  

The sketches of pXY, pX and pY are similar to part (a) anb (b) above.

5.16 a) The joint cdf is:

𝐹!,! π‘₯!, 𝑦! = 𝑃{𝑋 ≀ π‘₯!,π‘Œ ≀ 𝑦!}  

        Y                        0                        1/16                  9/16   16/16             2                        0                  1/16                  9/16   15/16                                         1                        0                        1/16                  5/16   7/16            

       1              2     X                        0                              0                                0          0    

Joint  cdf  properties:  

1. The  joint  cdf  is  a  non-­‐decreasing  function  of  X  and  Y.  a. In  both  the  X  and  Y  directions,  the  cdf  is  non-­‐decreasing.  

2. FX,Y(x1,-Β­β€βˆž)  =  0,  FX,Y(-Β­β€βˆž,y1)  =  0,  FX,Y(∞,∞)  =  1.  a. FX,Y(x1,-Β­β€βˆž)  =  0  for  all  columns,  FX,Y(-Β­β€βˆž,y1)  =  0  for  all  rows,  and  FX,Y(∞,∞)  =  1  

3. The  marginal  cdf’s  are  the  probabilities  of  the  half  planes  defined  by:  FX(x1)  =  P[X  β‰€  x1,  Y  <  βˆž]  and  FY(y1)  =  P[X  <  βˆž,  Y  β‰€  y1].  

a. lim!β†’! 𝐹X,Y(x1,n)  =  P[X  β‰€  x1]  =  FX(x1)  and    b. lim!β†’! 𝐹X,Y(n,y1)  =  P[Y  β‰€  y1]  =  FY(y1).    

4. The  joint  cdf  is  continuous  from  both  the  β€œnorth”  and  from  the  β€œeast”.  a. This  joint  cdf  is  continuous  from  both  the  β€œnorth”  and  the  β€œeast”.  

5. The  probability  of  the  rectangle  {x1  <  x  β‰€  x2,  y1  <  y  β‰€  y2}  is  given  by:    

Page 7: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

7   ECE  340  Homework  #8  Solutions  

 

P[x1  <  x  β‰€  x2,  y1  <  y  β‰€  y2]  =  FX,Y(x2,y2)  -­‐  FX,Y(x2,y1)  -­‐  FX,Y(x1,y2)  -­‐  FX,Y(x1,y1)      

b)  Find  the  marginal  cdf  of  X  and  of  Y.   FXY(x,y)  =  P{X  β‰€  x,  Y  β‰€  y}  

  The  marginal  cdf  of  X  is:  FX(x)  =  FXY(x,∞)  =     0     for  X  <  0                 1/16   for  0  β‰€  X  <  1                 9/16   for  1  β‰€  X  <  2                 16/16   for  X  β‰₯  2  

The  marginal  cdf  of  Y  is:  FY(y)  =  FXY(∞,y)  =     0     for  Y  <  0                 7/16   for  0  β‰€  Y  <  1                 15/16   for  1  β‰€  Y  <  2                 16/16   for  Y  β‰₯  2  

5.26 a) 1 = π‘˜ π‘₯ + 𝑦 𝑑π‘₯𝑑𝑦 = π‘˜ !!

!+ π‘₯𝑦

!

!𝑑𝑦 =!

!!!

!! π‘˜ !

!+ 𝑦 𝑑𝑦 = π‘˜ !

!𝑦 + !!

! !

!= π‘˜!

!

So, π‘˜ = 1 b)

𝑭𝑿𝒀(𝒙,π’š) = 𝒇𝑿𝒀 π’›πŸ, π’›πŸ π’…π’›πŸπ’…π’›πŸπ’™

!∞

π’š

!∞

For  0  <  x  <  1  and  y  >  1:  

  FXY(x,y)  =    !!  !! (x,y)  dxdy  =    !!  !! (x  +  y)  dxdy  =   [  !!  !

! x2  +  yx]10dy  =  !!+ 𝑦  !

! dy  

    =  [!!y  +  !

!y2]x0  =  [

!!(x)  +  !

!(x)2]  -­‐  [!

!(0)  +  !

!(0)2]  =  !

!x  +  !

!x2  =  !

!(x(x  +  1))  

For  0  <  y  <  1  and  x  >  1:  

  FXY(x,y)  =    !!  !! (x,y)  dxdy  =    !!  !! (x  +  y)  dydx  =   [  !!  !

! y2  +  yx]10dy  =  !!+ π‘₯  !

! dx  

    =  [!!x  +  !

!x2]y0  =  [

!!(y)  +  !

!(y)2]  -­‐  [!

!(0)  +  !

!(0)2]  =  !

!y  +  !

!y2  =  !

!(y(y  +  1))  

For  x  >  1  and  y  >  1:  

  FXY(x,y)  =    !!  !! (x,y)  dxdy  =    !!  !! (x  +  y)  dydx  =   [  !!  !

! y2  +  yx]10dx  =  !!  !

! (1)2  +  (1)x  dx  

    =   !!  !

!  +  x  dx  =  [!!(x)  +  !

!(x)2]10  =  [

!!(1)  +  !

!(1)2]  -­‐  [!

!(0)  +  !

!(0)2]  =  !

!  +  !

!  =  1  

If  (x,y)  is  inside  the  unit  interval:  

                           FXY(x,y)  =    !!  !! (x,y)  dxdy  =    !!  !! (z1  +  z2)dz1dz2  =   [  !!

!! z12+z2z1]y0dz2  =   [!! (!

!(y)2+z2(y))  

-­‐  (!!(0)2+z2(0))dz2  

=    !!!!y2  +  z2y  dz2  =  [

!!y2z2  +  

!!z22y]x0  =  [(

!!y2(x)  +  !

!(x)2y)  β€“  (!

!y2(0)  +  !

!(0)2y)]  =  !

!y2x  +  !

!x2y  

 

Page 8: ece-research.unm.eduece-research.unm.edu/hayat/ece340_12/hw8_12_sol.pdfTitle Microsoft Word - hw8_12_sol.docx

8   ECE  340  Homework  #8  Solutions  

 

c) 𝐹! π‘₯ = lim!β†’! 𝐹!" π‘₯, 𝑦 = 𝐹!" π‘₯, 1          π‘“π‘œπ‘Ÿ          0 ≀ π‘₯ ≀ 1 β‡’    π‘“! π‘₯ = !

!"𝐹! π‘₯ = π‘₯ + !

!,          π‘“π‘œπ‘Ÿ  0 ≀ π‘₯ ≀ 1

Similarly 𝑓! 𝑦 = 𝑦 + !

!,        π‘“π‘œπ‘Ÿ  0 ≀ 𝑦 ≀ 1

d) 𝑃 𝑋 < π‘Œ = π‘₯ + 𝑦 𝑑π‘₯𝑑𝑦 = !!

!+ π‘₯𝑦

!

!𝑑𝑦 = !!!

!𝑑𝑦!

!!!

!!

!! = !!

! !

!= !

!

𝑃 π‘Œ < 𝑋! = π‘₯ + 𝑦 𝑑𝑦𝑑π‘₯ = !!

!+ π‘₯𝑦

!

!!

𝑑π‘₯ = !!

!+ π‘₯! 𝑑π‘₯!

!!!

!!

!!! = !!

!"+ !!

! !

!= !

!"

5.45 𝑓 π‘₯, 𝑦 = π‘₯ + 𝑦 ,        0 < π‘₯, 𝑦 < 1

𝑓 π‘₯ = π‘₯ +12,        0 < π‘₯ < 1

𝑓 𝑦 = 𝑦 +12,        0 < 𝑦 < 1

𝑓 π‘₯, 𝑦 β‰  𝑓 π‘₯ 𝑓(𝑦)        0 < π‘₯, 𝑦 < 1 Thus, X and Y are not independent.

5.48 b) 𝑃 4𝑋 < 1,π‘Œ < 0 = 𝑃 𝑋 < !

!𝑃 π‘Œ < 0 = !

!Γ— !!Γ— !!= !

!"

d) 𝑃 π‘šπ‘Žπ‘₯ 𝑋,π‘Œ < !!= 𝑃 𝑋 < !

!  π‘Žπ‘›π‘‘  π‘Œ < !

!= 𝑃 𝑋 < !

!𝑃 π‘Œ < !

!= !

!Γ— !!Γ—(!

!Γ— !!) = !

!