Download - Disposable technologies for purification of biopharmaceuticals · Disposable Technologies for Purification of Biopharmaceuticals ... • Natural Hormones and Enzymes ... Fermentation

Transcript

Disposable Technologies for Purification of Biopharmaceuticals

Thomas C. RansohoffBioProcess Technology Consultants, Inc.

NE Society for Industrial Microbiology Winter Meeting Boston, MA

December 14, 2009

From Clone to Commercial®

OutlineWhy Disposables/Single‐Use?

Single‐Use Technology Overview

BioSMB – An Enabling Disposable Purification Technology

Why Disposables?

From Clone to Commercial®

Definition of BiopharmaceuticalsBiologic Products are products that are made by or composed of viable organisms or biopolymer analogs

• Recombinant Proteins

• Monoclonal Antibodies

• Natural Hormones and Enzymes 

• Synthetic Peptides and Oligonucleotides

• Antibiotics, Plant & Animal Extracts, Allergens

• Vaccines

• Gene Therapy Products, Human & Xenogenic Cells & Tissues

• Blood & Blood Derivatives, including polyclonal antibodies

From Clone to Commercial®

Biopharmaceutical Industry Growth

BPTC database covers 126 commercially marketed biopharmaceuticals as of 2009

Biopharmaceutical Commerical Product Sales Growth

-

5

10

15

20

25

30

35

40

2002 2003 2004 2005 2006 2007 2008

Annu

al S

ales

($B)

Mammalian Recombinant Products109 Kg required for 2008Mammalian MAb Products6,918 Kg required for 2008Microbial Recombinant Products12,975 Kg required for 2008Microbial MAb Products4 Kg required for 2008

From Clone to Commercial®

General Scheme for Biopharmaceutical Bulk Drug Substance ProcessesIntracellular(microbial fermentation)

Bulk Formulation

PurificationPurification

Isolation/Recovery Isolation/Recovery

Cell Disruption/Refold

Cell Harvesting Cell Removal

Bioreactor Conversion

Bulk Formulation

Working Cell Bank Extracellular(microbial fermentation and mammalian cell culture)

“Downstream”Process

“Upstream”Process

From Clone to Commercial®

20,000 L Fermentation Suite

Source: Lonza Presentation, “US Operations Overview”

From Clone to Commercial®

Purification – Large-Scale Chromatography

Source: Lonza Presentation, “US Operations Overview”

From Clone to Commercial®

Biopharmaceutical Development

Costs $1-50 Million $25-200 Million

Product Concept

Development

Laboratory & Animal Studies

IND Submission

Human Studies

BLA/EMEA Submission

Preclinical 30-DayWait

Clinical Development BLA Review

ProductMarketing

Treatment IND

Manufacturing

IND Preparation Initial Review Supplemental Reporting & Review

Phase IV ?Phase I Phase II Phase III

1-5 yrs(2.3yrs)

1-3yrs(1.8yrs.)

0.5-2yr 1-3yrs 1-5yrs(total avg. 3-6 yrs)

RTF / Non-approval

Short Term Long Term

Basic Research

Benchtop SecondaryClinicalPilot Commercial

R&D Reg. Strategy Product & Mfg. Development Finalization

Drafting Review & Approval Supplements

total 5-12yrs (7 yrs.)

Time

$50-500+ Million

Clinical PD and Mfg TimeframeClinical PD and Mfg Timeframe

Adapted from: G. Gamerman, Seraphim

From Clone to Commercial®

Phase I(12 months)

Phase II(24 months)

Phase III(24 months)

Filing & Review (18 months)

• Dose Finding • First Efficacy

• Safety

• Pivotal Trials

LeadLead--Time for Building a Commercial PlantTime for Building a Commercial Plant(~4 years)(~4 years)

Design(12 months)

Construction(24 months)

Validation(12 months)

Clinical Development Timeline(6-7 years)

ProductLaunch

Plant investment decisions must be made long before product approval

Timing of Plant Construction

Source: P. Seymour, IBC Bench to Clinic 2002

From Clone to Commercial®

Mammalian Cell Culture Facility Costs

Capital Cost per Liter vs. Plant Capacity

$-

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

2.50 3.00 3.50 4.00 4.50 5.00Log Plant capacity (L)

Cos

t per

L (0

00)

From Clone to Commercial®

Pipeline Weighted Towards MAb ProductsMonoclonal antibodies represent the fastest growing segment of the pharmaceutical industry

85 – 90% of the mammalian cell culture product pipelineApproximately 65% of all biopharmaceutical products in development are produced in mammalian cell culture

0

20

40

60

80

100

120

140

Market BLA/NDA Phase 3 Phase 2 Phase 1**

No. o

f Pro

duct

s

MammalianMicrobialOther (Plant, Insect, etc.)

0%

20%

40%

60%

80%

100%

Market BLA/NDA Phase 3 Phase 2 Phase 1**

Per

cent

MA

b-Ba

sed

MammalianMicrobial

From Clone to Commercial®

Activity Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Pre-clinical stage 1Cell line developmentAnalytical developmentProcess developmentMCB Prep/TestReference Standard Development and CharacterizationClinical formulation developmentPre-IND meetingDS Mfg (Engineering and GMP clinical runs) and release testingDP Mfg and release testingStability studies (DP and DS)IND filingMILESTONE POINT 1 - IND Filing

Y2 Y3Y1

Platform Processes

Disposable Technologies

Accelerating Speed to Clinic

From Clone to Commercial®

Project Risk and Cost of Capital are Significantly Higher for Clinical Manufacturing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Time (yr)

Probability of Success Cost of Capital *

Preclin

Phase I

Phase II

Phase III

BLA Approval

* - Cost of Capital estimate based on discount factors from a risk-adjusted NPV analysis

From Clone to Commercial®

1) Technologies that • reduce capital investment and/or• increase speed to risk-reduction milestones

are inherently more valuable in high-risk projects2) CMC is often on the critical path in early-stage biopharmaceutical development

⇒There is a compelling financial and risk-management argument for disposable manufacturing technologies inearly-stage biopharmaceutical development

From Clone to Commercial®

Driving Forces for Single-Use Technologies

Improved return on capital

• Reduced and deferred capital investment

• Increased speed of deployment

Process control and portability

Process and product flexibility

Improved ability to manage and implement change

From Clone to Commercial®

The Biopharmaceutical Facility of the FutureFacility design will incorporate high titer (>10 g/L) processes

Facilities of the future will require greater DSP space and capabilities to better handle the high titer bioreactor output

• Ratio of bioreactor space to DSP space will decrease

Use of disposable technologies can reduce capital investment by over 50% and operating costs of manufacturing facilities (Roebers, 2009)

Smaller bioreactors will produce similar quantities to today’s larger bioreactors 

Smaller facility requirements may enable smaller companies to construct and manage their own facilities more cost effectively

Roebers J, “Future trends in biopharmaceutical operations and facilities,” presented at BPI 2009, Raleigh NC

Single-Use Technology Overview

From Clone to Commercial®

Increasing Scale of Disposable Bioreactor Offerings

Rocking PlatformWave BioreactorUp to 500LGE Healthcare (Wave)

Stirred‐tankSingle‐use Bioreactor (S.U.B.)

Up to 1,000LThermo Fisher (Hyclone)

Stirred‐tankXDRTM BioreactorUp to 2,000LXcellerex

TechnologyProduct NameScaleVendor

From Clone to Commercial®

Disposable Products* Now Exist Across the Entire Biopharmaceutical Manufacturing Flowpath

Fermentation

Media Prep/Storage

Purification

Buffer Prep/Storage

Formulation/Fill

Sartorius Stedim (Celsius),Flexicon (DAFPA)

Sartorius Stedim, Thermo Fisher, ATMI, TNTC

GE (Wave), Thermo Fisher(Hyclone S.U.B.), Xcellerex (XDR)

* - Suppliers profiled are not a complete list nor an endorsement of any specific company or technology

Disposable Sensor Technology

From Clone to Commercial®

Downstream processing unit operations

Normal Flow Filtration• Depth filtration for 

clarification• Nanofiltration for virus 

removal• Sterile filtration Tangential Flow Filtration• Ultrafiltration for 

concentration and buffer exchange

• Microfiltration for clarification

Centrifugation• Clarification• Inclusion body isolation

Cell Breakage/Homogenization

• For recovery of products expressed intracellularly

Refolding

• For some E. coli products

Crystallization/Precipitation

Chromatography and adsorptive separations

• Typical downstream process includes 3 – 4 chromatography and/or membrane adsorber steps

Ion exchange

Hydrophobic interaction

Affinity

Size exclusion

Reverse phase

From Clone to Commercial®

Disposable Format Depth Filtration:Improvements in Hardware Design

Improved CIP of Hardware• Self‐contained, disposable Pods

• Disposable feed ports and fittings

• No product contact with endplates or process skid

Improved Handling• No messy spent filters

• Lightweight, easy to set up and use

• No hoist or high ceiling required

Courtesy of Millipore

From Clone to Commercial®

Disposable format purification product examples:Chromatography and Adsorptive SeparationsMembrane adsorbers

• Sartorius Sartobind®

• Pall Mustang®

Disposable chromatography columns

• GE Ready‐to‐ProcessTM

• BioFlashTM

Other

• Scouting columns and technologies

* - Suppliers profiled are not a complete list nor an endorsement of any specific company or technology

From Clone to Commercial®

Membrane Adsorber Use in Commercial DSP

AfterAffinityStep

After DNAremoval

step

0

100

200

DNA (pg/mgprotein)

Average of eight 2,000 liter batches using 70 ml Sartobind

Average of three 12,500 liter batches using 500 ml Sartobind

...clears the DNAbelow detection limit

.J. K. Walter, Boehringer-IngelheimPharma in: Bioseparation andBioprocessing, G. Subramanian (ed.) Wiley VCH, 1998, Vol. II p. 447-460

Courtesy of Sartorius

From Clone to Commercial®

Other Literature Examples of Process Use of Membrane AdsorbersMartin J, “Case Study – Orthogonal Membrane Technologies for Viral and DNA Clearance,” presented at SCI Membrane Chromatography Conference (2004).

Haber C et al, “Membrane chromatography of DNA: conformation‐induced capacity and selectivity,” BiotechnolBioeng, 88(1) (2004).

Slepushkin V et al, “Large‐scale Purification of a LentiviralVector by Size Exclusion Chromatography or Mustang Q Ion Exchange Capsule,” Bioprocessing Journal, Sep/Oct 2003.

Vogel J et al, “Industrial‐Scale Membrane Chromatography for Rapid Capture of Complex Protein Drugs from Continuous Perfusion Culture,” presented at Recovery of Biological Products 13 (2008).

From Clone to Commercial®

Ready-to-Process Chromatography Columns(GE Healthcare)12.6, 25.1, and 35.9 cm ID x 20 cm H

BioFlash Disposable FormatChromatography (DFCTM) Columns(BioFlash Parnters)1.2, 8, and 20 cm ID x variable H

Disposable Chromatography Technology Examples: Pilot/Process Scale

From Clone to Commercial®

Downstream processing unit operations

Normal Flow Filtration• Depth filtration for 

clarification• Nanofiltration for virus 

removal• Sterile filtrationTangential Flow Filtration• Ultrafiltration for 

concentration and buffer exchange

• Microfiltration for clarification

Centrifugation• Clarification• Inclusion body isolation

Cell Breakage/Homogenization

• For recovery of products expressed intracellularly

Refolding

• For some E. coli products

Crystallization/Precipitation

Chromatography and adsorptive separations

• Typical downstream process includes 3 – 4 chromatography and/or membrane adsorber steps

Ion exchange

Hydrophobic interaction

Affinity

Size exclusion

Reverse phaseExample of emerging TFF technology: Sius (Novasep); SPF (Pall); Petrone J, RXIII Conference

Example of emerging Centrifuge technology: Centritech (Pneumatic Scale)

BioSMB: An Enabling Disposable Purification Technology

From Clone to Commercial®

The Biopharmaceutical Facility of the FuturePlant has 6 x 2,000 L bioreactors (possibly single use bioreactors)

12 day fed‐batch CHO culture for MAb Production

• 2,000 L volume, 10 g/L = 20 Kg MAb in harvest

• 80% purification yield = 16 Kg per batch

Harvest every 4 days

• 85 harvests/year (340 days) = 1,360 Kg/year

Capital investment < $100M

Overall COGS < $70 per gram

From Clone to Commercial®

Disposable Format Availability

From Clone to Commercial®

Status & History of SMB TechnologySMB and Continuous Chromatography are well established unit operations

Advantages:

• Reduction in buffers & solvents (40 – 60%)

• Reduction in resin volume (40 – 60%)

History of SMB:

• 1950 – 1960 SMB developed for petrochemical industry

• 1960 – 1970 First applications in food industries

• 1980 – 1990 Fine chemical industries applications

• 1990 – 2000 Chiral separations for pharma industry

• 2000 – 2010 Biopharmaceutical applications

From Clone to Commercial®

Multicolumn Countercurrent Concept

vWashElutionWash

From Clone to Commercial®

SMB Technology: Market PlaceStatic Type SMB

UOP

NovaSep

Mitsubishi

Puritech

Carousel Type SMB

Calgon Carbon Corporation

SepTor Technologies

From Clone to Commercial®

BioSMBTM Operation

FeedEquil.

Clean

Elute

Wash

WasteProd.

Disposable valve cassette

From Clone to Commercial®

BioSMBTM Operation

FeedEquil.

Clean

Elute

Wash

WasteProd.

Disposable valve cassette

From Clone to Commercial®

BioSMBTM Operation

FeedEquil.

Clean

Elute

Wash

WasteProd.

Disposable valve cassette

From Clone to Commercial®

Fully disposable-format separation solutionScalable from bench to large-scale manufacturing

Tarpon’s BioSMB™ Technology Platform

‘SMB’ made forBiopharm applications

Fully disposable fluid path including valving

Flexible configuration modular design

Multi‐column or Multi‐device mode with unlimited scale

Continuous Disposable Multicolumn Chromatography

From Clone to Commercial®

BioFlash DFCTM CartridgesFeatures:

Various sizes available

Biocompatible & sanitary

Fully prepacked & tested

Wide range of bioprocess separation media possible

Consistent high performance

Designed for cleanability to allow multiple cycles

From Clone to Commercial®

BioSMB ApplicationsFully disposable processing train• Paired with disposable bioreactors (up to 2,000 L)

• Clinical manufacturing of MAbs

• Full scale production for some rProtein therapeutics and MAbs

• Vaccine manufacturing

Large scale processes (5,000 – 20,000 L bioreactors) • Substantial reduction of purification and total manufacturing costs 

• Smaller footprint process and support systems such as buffer tanks, WFI (More product purified per sq ft manufacturing space)

• Facility fit: enable newer high titer processes to fit inexisting facilites

Smaller, less expensive, more flexible downstream processingIncreased titer: add more disposables to the same hardware

From Clone to Commercial®

Facility of the Future: Disposable Protein A StepClinical Manufacturing of MAb (Protein A step) *

Bioreactor volume: 2000 L

Expression level: 5 gm/L

Protein A media: MabSelect SURE** Pre‐packed in BioFlash format

81No. of columns

6 cm25 cmColumn height

8 cm60 cmColumn diameter

885Cycles per Batch

2.5 L71 LColumn Volume

BioSMBBatch

Bioflash DFC cartridges(8 cm and 20 cm ID shown)

* Assuming 48 hr processing time for the Protein A chromatography step** GE Healthcare Product packed into 8 cm Diameter X 6 cm Height BioFlash format

* Bisschops, M. “Disposable Format Downstream Process using Continuous Multi-Column Chromatography,”IBC Single-Use Conference, Jun 2009.

From Clone to Commercial®

BioSMB™ OpportunitiesProof of principle has been delivered using:

Prepacked columns (Bioflash DFC™);

Monolithic cartridges (BIA Separations CIM);

Expanded Bed Adsorption (Upfront Rhobust™);

Membrane Adsorbers (Undisclosed).

Protein A chromatography;

IX chromatography;

HIC chromatography;

Mixed mode chromatography;

Gel filtration chromatography.

From Clone to Commercial®

ConclusionsProduct and process innovations resulting in higher yields per batch and lower demand for bioreactor capacity implies:• Investments in manufacturing facilities will continue to slow

• Disposable/single‐use technologies possible for some commercial supply

Single‐use, disposable format purification technologies are increasingly available to support output from disposable bioreactors• All conventional DSP unit operations now have disposable 

format solutions

• Technologies such as BioSMB offer potential to address commercial disposable purification requirements

From Clone to Commercial®

Thank you!BioProcess Technology Consultants, Inc.

289 Great Road, Suite 303

Acton, MA 01720

978.266.9154 (phone)

978.266.9152 (fax)

[email protected]

www.bioprocessconsultants.com