Download - Chapter 2 Meteorology and · PDF fileChapter 2 Meteorology and Oceanography ... Wind is one of the most distinctive meteorological phenomena, namely, the phenomenon that the air moves

Transcript
  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    57

    Chapter 2 Meteorology and Oceanography

    1 Meteorology and Oceanography Items to be Considered for Performance Verification1.1 GeneralThefollowingmeteorologyandoceanographyitems,shallbeconsideredwithregardtotheperformanceverificationofportfacilities.

    Atmosphericpressureanditsdistributionarefactorsthatgeneratewinds.

    Windsgeneratewavesandstormsurge,andaffectthewindpressurethatactsuponportfacilitiesandmooredvessels,andbecomeafactortointerferewithcargohandlingandotherportoperations.See2 Windsfordetails.

    The tidal level affects soil pressure andwater pressure,which act onport facilities, andbecomes a factor tointerferewithcargohandlingandotherportoperations.Also,ithasaneffectonwavesinareasofshallowwater.See3 Tidal levelfordetails.

    Wavesexertwaveforceonportfacilities,andbecomeafactortointerferewiththefunctioningofportfacilities.Theyalsoactonmooredvessels,causingthemtomoveandinterferewithcargohandlingandotherportoperations.Theyalsocanraisethemeanwaterlevel,whichhaseffectssimilartothetidallevelasmentionedabove.See4 Wavesfordetails.

    Tsunamiexertswaveforceandfluidforceonportfacilities,andbecomesafactortointerferewiththefunctioningofportfacilities.Italsoactsonmooredships,causingthemtomove.See5 Tsunamisfordetails.

    Watercurrentsaffectsedimentsontheseabottomandbecomeafactortointerferewiththefunctioningofportfacilities.See6 Water Currents etc.fordetails.

  • 58

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    2 WindsPublic NoticeWinds

    Article 6Characteristicsofwindsshallbesetbythemethodsprovidedinthesubsequentitemscorrespondingtothesingleactionorcombinationoftwoormoreactionstobeconsideredintheperformancecriteriaandtheperformanceverification:(1) Oceansurfacewinds tobeused in theestimationofwavesandstormsurge shallbeappropriately

    definedintermsofwindvelocity,winddirectionandothersbasedonthelong-termwindobservationorweatherhindcasting.

    (2) Windstobeusedinthecalculationofwindpressuresshallbeappropriatelydefinedintermsofthewindvelocityanddirectioncorrespondingtothereturnperiodthroughthestatisticalanalysisofthelong-termdataofobservedorhindcastedwindsorothermethods.

    (3) Windstobeusedinthecalculationofwindenergyshallbeappropriatelydefinedintermsofthejointfrequencydistributionofwindvelocityanddirectionforacertaindurationoftime,basedonthelong-termdataofobservedorhindcastedwinds.

    [Commentary]

    1) WindstobeusedintheEstimationofWavesandStormSurge:Windstobeusedintheestimationofwavesandstormsurgeshallbeobservedorhindcastedvaluesfor30yearsormoreasastandard.

    2) WindstobeusedintheCalculationofWindPressure:Windstobeusedinthecalculationofwindpressureshallbeobservedorhindcastedvaluesfor30yearsormoreasastandard.

    [Technical Note]

    2.1 General

    (1)Windisoneofthemostdistinctivemeteorologicalphenomena,namely,thephenomenonthattheairmovesduetoatmosphericpressuredifferencesandheat.Theconditionsunderwhichwindsblowovertheoceanareusuallyverydifferentthanforthoseoverland.Windvelocitiesovertheoceanaremuchhigherthanthoseoverlandneartheshore.1)Forperformanceverificationofportfacilities,theeffectsofwindsmustbeappropriatelyevaluated.

    (2)GradientWinds

    Thevelocityofthegradientwindcanbeexpressedasafunctionofpressuregradient,radiusofcurvatureofbarometicisolines,latitude,andairdensityasinequation(2.1.1).

    (2.1.1)

    where Vg :velocityofgradientwind(m/s);inthecaseofananticyclone,equation(2.1.1)givesanegative

    valueandsotheabsolutevalueshouldbetaken. p/r :pressuregradient(takentobepositiveforacyclone,negativeforananticyclone)(kg/m2/s2) r :radiusofcurvatureofbarometicisolines(m) :angularvelocityofEarth'srotation(1/s) =7.2710-5/s :latitude() a :densityofair(kg/m3)

    Beforeperformingthecalculation,measurementunitsshouldfirstbeconvertedintotheMKSunitslistedabove.Notethat1oflatitudecorrespondstoadistanceofapproximately1.11105m,andanairpressureof1.0hPais100kg/m/s2.

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    59

    Agradientwindforwhichthebarometicisolinesarestraightlines(i.e.,theirradiusofcurvatureinequation(2.1.1)isinfinite)iscalledthegeostrophicwind.Inthiscase,thewindvelocityisasequation (2.1.2).

    (2.1.2)

    Theactualseasurfacewindvelocityisgenerallylowerthanthevalueobtainedfromthegradientwindequation.Moreover, although the direction of a gradientwind is parallel to the barometic isolines in theory, the seasurfacewindblowsatacertainangletothebarometicisolinesinrealityasillustratedinFig. 2.1.2.Inthenorthernhemisphere,thewindsaroundacycloneblowinacounterclockwisedirectionandinwards,whereasthewindsaroundananticycloneblowinaclockwisedirectionandoutwards.Itisknownthattherelationshipbetweenthevelocityofgradientwindsandthatoftheactualseasurfacewindvarieswiththelatitude.ThisrelationshipundertheaverageconditionsissummarizedasinTable 2.1.1.3)

    Low

    High

    (a) Cyclone (b) Anticyclone

    Fig. 2.1.2 Wind Direction for a Cyclone (Low) and an Anticyclone (High)

    Table 2.1.1 Relationship between Sea Surface Wind Speed and Gradient Wind SpeedLatitude() 10 20 30 40 50

    Angle() 24 20 18 17 15

    VelocityratioVs /Vg 0.51 0.60 0.64 0.67 0.70

    (3)TyphoonWindsIncalculationsconcerningthegenerationofstormsurgeorwavesduetoatyphoon,itiscommontoassumethattheairpressuredistributionfollowseitherFujitasequation (2.1.3)4)or Myers equation (2.1.4) 4);theconstantsinthechosenequationaredeterminedbasedonactualairpressuremeasurementsintheregionoftyphoons.

    Fujitasformula

    (2.1.3)

    Myersformula

    (2.1.4)

    where p :airpressureatadistancer fromthecenteroftyphoon(hPa) r :distancefromthecenteroftyphoon(km) pc :airpressureatthecenteroftyphoon(hPa) r0 :estimateddistancefromthecenteroftyphoontothepointwherethewindvelocityismaximum

    (km) p :airpressuredropatthecenteroftyphoon(hPa) p=p-pc p :airpressureatr =(hPa); p=pc+p

    Thesizeofatyphoonvarieswithtime,andso r0andp mustbedeterminedasthefunctionsoftime

    (4)MeteorologicalGPVOrganizations such as the Japan Meteorological Agency, the European Center for Medium-Range Weather

  • 60

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    Forecasts(ECMWF),andAmericasNationalCenterforEnvironmentalProtection(NCEP),calculatethevaluesofitemssuchasairpressure,windvelocity,winddirection,andwatervaporflux,basedoncalculationmodelsformeteorologicalvaluesthatuseathree-dimensionalcalculationgrid,andthevaluesatthegridpoints(GPV:gridpointvalues)aresaved.TheseGPVsmaybeusedinsteadofwindhindcastingsbasedonequation (2.1.1) throughequation (2.1.4). However,whenagridwithlargespacingisusedformeteorologicalcalculationstheatmosphericpressureandwindsmaynotbesatisfactorilyreproducedatplaceswheremeteorologicalconditionschangedrasticallywithposition,suchasnear thecentersof typhoons. Therefore,whenGPVsareused, it ispreferabletouseobservationalvaluestoverifytheprecision.

    (5)WindEnergyIfwindsareconsideredasthemovementoftheairthenthewindenergythatcrossesaunitcross-sectionalareainunittimeisgivenbyequation(2.1.5).1) Winds forestimating thewindenergyshallbeappropriatelyspecifiedwith jointstatisticdistributions forvelocity and direction for a fixed time (usually, one year), based on long-term (usually, three years ormore)observedorhindcasteddata.

    (2.1.5)

    where P :windforceenergyperunitcross-sectionalarea(W/m2) a :airdensity(kg/m3) V :windvelocity(m/s)

    Inotherwords,thewindforceenergyisproportionaltothecubeofthewindvelocity,soasmalldifferenceinwindvelocitycanmeanabigdifferenceinenergy(powergeneration).Therefore,duringperformanceverificationoffacilitiesthatusewindforceenergy,itisimportanttoaccuratelyunderstandhowtheconditionschangewithregardtotimeandspace. Inthecoastalzonethewindconditionsvariesdrasticallybetweenlandandsea.Also,windvelocityshowsgreatvariationonlandduetoaltitude,butovertheseathechangesinwindvelocitywithaltitudearegradual,soitispossibletoobtainhighlystabilizedwindsthatareappropriateforpowergenerationatrelativelylowaltitudes.Forexample,theresultsofmeasurementsinthevicinityoftheKansaiInternationalAirport,showthatthewindenergyoverthecourseofayearatameasurementtower(MTstation)placedataheightof15metersovertheoceanwereroughlythesameasatalandstation(Cstation)withanaltitudeof100meters,andaboutfivetimesgreaterthanatalandstationwithanaltitudeof10meters.5)

    2.2 Characteristic Values of Wind Velocity

    (1)DeterminationofWindCharacteristicsTheelementsofwindsaredirectionandvelocity,wherethewinddirectionisexpressedasoneofsixteendirectionsand thewindvelocity is themeanvelocityover10minutes. Thevelocityofwinds thatactsdirectlyonportfacilitiesandmooredshipsisspecifiedingeneralasavelocityforacertainperiodofoccurrence,asestimatedfromtheprobabilityofoccurrencedistributionofwindvelocitybasedonlong-termmeasuredvaluesover30yearsormore.Usingtheannualmaximum10-minutemeanwindvelocitiesoverabout35years,basedonMeasurementTechnicalDataSheet#34oftheJapanMeteorologicalAgency,7)andassumingadoubleexponentialdistribution,theexpectedwindvelocitiesover5,10,20,50,100,and200yearshavebeencalculatedat141meteorologicalstations. Forperformanceverificationoffacilities, thesedatacanbeusedasreferencevalues,however if thelocationofstudyhasdifferenttopographicalconditionsfromtheclosestofthesemeteorologicalstationsthenitisnecessarytotakemeasurementsforatleastoneyeartodeterminetheeffectofthetopography.8)

    (2)Thewindvelocitiesobtainedatthemeteorologicalstationsarethevaluesatabout10metersabovetheground.Therefore,whenusingthemeasuredvaluestoestimatethewindsovertheocean,iftheheightofthetargetfacilityisverydifferentfromtheheightmentionedabove,thencorrectionoftheheightshallbeperformedforthewindvelocity.Theverticaldistributionofwindvelocityisusuallyshownonalogarithmicscale,howeverforsimpli