Download - Chapter 05 - Vibrational Motion - Grandinetti

Transcript
Page 1: Chapter 05 - Vibrational Motion - Grandinetti

Chapter 05Vibrational Motion

P. J. Grandinetti

Chem. 4300

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 2: Chapter 05 - Vibrational Motion - Grandinetti

Simple Harmonic Oscillator

Simplest model for harmonic oscillator: mass attached to one end of spring while other end isheld fixed

+x-x 0

m

Mass at x = 0 corresponds to equilibrium positionx is displacement from equilibrium.Assume no friction and spring has no mass.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 3: Chapter 05 - Vibrational Motion - Grandinetti

Simple Harmonic Oscillator

Pull mass and let go.

+x-x 0

m

Mass at x = 0 corresponds to equilibriumpositionx is displacement from equilibrium.Assume no friction and spring has nomass.

What happens? An oscillation.

Time for 1 complete cycle is T.How do we get and solve equation of motionfor this system?

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 4: Chapter 05 - Vibrational Motion - Grandinetti

Simple Harmonic OscillatorHookeโ€™s law

For small displacements from equilibrium restoring force is F = โˆ’๐œ…fxwhere ๐œ…f is force constant for spring.

Use Newtonโ€™s 2nd law: F = ma = โˆ’๐œ…fx

to obtain differential equation of motion: mx(t) + ๐œ…fx(t) = 0

Propose solution

x(t) = A cos(๐œ”t + ๐œ™), x(t) = A๐œ” sin(๐œ”t + ๐œ™), x(t) = โˆ’A๐œ”2 cos(๐œ”t + ๐œ™)

Substitute into differential equation:(๐œ…f โˆ’ m๐œ”2)A cos(๐œ”t + ๐œ™) = 0

Satisfy solution for all t by making m๐œ”2 = ๐œ…f through definition: ๐œ” = ๐œ”0 =โˆš๐œ…fโˆ•m

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 5: Chapter 05 - Vibrational Motion - Grandinetti

Simple Harmonic OscillatorSolution is

x(t) = A cos(๐œ”0t + ๐œ™)

where ๐œ”0 โ‰ก natural oscillation frequency given by ๐œ” = ๐œ”0 =โˆš๐œ…fโˆ•m

Velocity of mass isv(t) = x(t) = โˆ’๐œ”0A sin(๐œ”0t + ๐œ™)

Make x(t) and x(t) equations satisfy initial conditions of

x(t = 0) = A and x(t = 0) = 0

by setting ๐œ™ = 0 and A = x(0) to get final solution

x(t) = x(0) cos๐œ”0t and v(t) = โˆ’๐œ”0x(0) sin(๐œ”0t)

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 6: Chapter 05 - Vibrational Motion - Grandinetti

Simple Harmonic Oscillator โ€“ Other trial solutions

Instead of using x(t) = A cos(๐œ”t + ๐œ™) as trial solution for mx(t) + ๐œ…fx(t) = 0โ–ถ Could have used

x(t) = A cos๐œ”t + B sin๐œ”t.

โ–ถ Could also have used complex variables:โ˜… replace x(t) with a complex variable, z(t),

mz(t) + ๐œ…fz(t) = 0

โ˜… Make an initial guess of

z(t) = Aei(๐œ”t+๐œ™) or z(t) = Aei๐œ”t + Beโˆ’i๐œ”t

โ˜… Obtain real solution by taking real part of complex solution, z(t).

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 7: Chapter 05 - Vibrational Motion - Grandinetti

Complex Variables Review

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 8: Chapter 05 - Vibrational Motion - Grandinetti

Complex Variables ReviewComplex variables are a mathematical tool that simplifies equations describing oscillations.Consider the 2D motion of this vector.

How would you describe this mathematically?You probably would suggest:

x(t) = r cos๐œ”t and y(t) = r sin๐œ”tP. J. Grandinetti Chapter 05: Vibrational Motion

Page 9: Chapter 05 - Vibrational Motion - Grandinetti

Complex Variables ReviewWith complex notation we combine two equations into one

Start with x(t) = r cos๐œ”t and y(t) = r sin๐œ”t

First we define the square root of โˆ’1 as

if i =โˆšโˆ’1 then i2 = โˆ’1

Second we define complex variable z as

z = x + iy

x is real part and y is imaginary part of z.

Two circular motion equations become one circular motion equation

z(t) = r cos๐œ”t + ir sin๐œ”t

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 10: Chapter 05 - Vibrational Motion - Grandinetti

Complex Variables ReviewEulerโ€™s formula

In 1748 Euler showed that ei๐œƒ = cos ๐œƒ + i sin ๐œƒ Eulerโ€™s formula

With Eulerโ€™s formula z(t) = r cos๐œ”t + ir sin๐œ”t becomes z(t) = rei๐œ”t

Calculate the product (cos๐œ”at + i sin๐œ”at)(cos๐œ”bt + i sin๐œ”bt).

(cos๐œ”at+ i sin๐œ”at)(cos๐œ”bt+ i sin๐œ”bt) = cos๐œ”at cos๐œ”bt+ i cos๐œ”at sin๐œ”bt+ i sin๐œ”at cos๐œ”btโˆ’sin๐œ”at sin๐œ”bt

2 cos ๐œƒ cos๐œ™ = cos(๐œƒ โˆ’ ๐œ™) + cos(๐œƒ + ๐œ™) 2 sin ๐œƒ sin๐œ™ = cos(๐œƒ โˆ’ ๐œ™) โˆ’ cos(๐œƒ + ๐œ™)2 sin ๐œƒ cos๐œ™ = sin(๐œƒ + ๐œ™) + sin(๐œƒ โˆ’ ๐œ™) 2 cos ๐œƒ sin๐œ™ = sin(๐œƒ + ๐œ™) โˆ’ sin(๐œƒ โˆ’ ๐œ™)

(cos๐œ”at + i sin๐œ”at)(cos๐œ”bt + i sin๐œ”bt) = cos(๐œ”a + ๐œ”b)t + i sin(๐œ”a + ๐œ”b)t

Using Eulerโ€™s formula:(cos๐œ”at + i sin๐œ”at)(cos๐œ”bt + i sin๐œ”bt) = ei๐œ”atei๐œ”bt = ei(๐œ”a+๐œ”b)t = cos(๐œ”a + ๐œ”b)t + i sin(๐œ”a + ๐œ”b)t

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 11: Chapter 05 - Vibrational Motion - Grandinetti

Complex Variables Review

Any complex number can be written in the form

z = x + iy = |z|ei๐œƒ

where |z| is the magnitude of the complex number

|z| = โˆšx2 + y2

and ๐œƒ is the argument of the complex number

tan ๐œƒ = yโˆ•x

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 12: Chapter 05 - Vibrational Motion - Grandinetti

Complex Variables ReviewComplex Conjugate

Complex conjugate, zโˆ—, of z is obtained by changing sign of imaginary part

if z = x + iy then zโˆ— = x โˆ’ iy

if z = 1 + 4i4 โˆ’ 5i

then zโˆ— = 1 โˆ’ 4i4 + 5i

if z = 1 + ia4 โˆ’ ib

then zโˆ— = 1 โˆ’ iaโˆ—4 + ibโˆ—

.

Related identitiesโ–ถ |z| = โˆš

zzโˆ—, since

zzโˆ— = (x + iy)(x โˆ’ iy) = x2 + iyx โˆ’ ixy + y2 = x2 + y2 = |z|2โ–ถ (z1z2z3 โ‹ฏ)โˆ— = zโˆ—1zโˆ—2zโˆ—3 โ‹ฏ

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 13: Chapter 05 - Vibrational Motion - Grandinetti

Energy of simple harmonic oscillator

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 14: Chapter 05 - Vibrational Motion - Grandinetti

Energy of simple harmonic oscillatorTotal energy of simple harmonic oscillator is sum of kinetic and potential energy of mass andspring.

Kinetic energy is given by

K = 12

mv2, or K =p2

2m

Potential energy is energy stored in spring and equal to work done in extending andcompressing spring,

V(x) = โˆ’โˆซx

0F(xโ€ฒ)dxโ€ฒ = โˆซ

x

0๐œ…fxโ€ฒdxโ€ฒ = 1

2๐œ…fx2

Expression above is work associated with extending spring.

For work in compressing spring just change integral limits to โˆ’x to 0 (get same result).

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 15: Chapter 05 - Vibrational Motion - Grandinetti

Energy of simple harmonic oscillatorPotential energy is given by

V(x) = 12๐œ…fx2

V(x)

0x

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 16: Chapter 05 - Vibrational Motion - Grandinetti

Energy of simple harmonic oscillator

Although both K and V are time dependent during harmonic motion the total energy,E = K + V, remains constant.

E = 12

mv2(t) + 12๐œ…fx2(t) or E =

p2(t)2m

+ 12๐œ…fx2(t)

EnergyKinetic Energy

Potential EnergyTotal Energy

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 17: Chapter 05 - Vibrational Motion - Grandinetti

Energy of simple harmonic oscillatorSubstitute equation of motion into energy expression

E = 12

mv2(t) + 12๐œ…fx2(t) = 1

2m๐œ”2

0x2(0) sin2(๐œ”0t) + 12๐œ…fx2(0) cos2 ๐œ”0t

Recall that ๐œ…f = m๐œ”20 so

E = 12

m๐œ”20x2(0)

[sin2(๐œ”0t) + cos2 ๐œ”0t

]= 1

2m๐œ”2

0x2(0)

Solve for initial amplitude, x(0), in terms of energy

x(0) = 1๐œ”0

โˆš2Em

and rewrite oscillation as

x(t) = x(0) cos๐œ”0t =โˆš

2E๐œ”2

0mcos๐œ”0t and v(t) = โˆ’๐œ”0x(0) sin(๐œ”0t) = โˆ’

โˆš2Em

sin๐œ”0t

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 18: Chapter 05 - Vibrational Motion - Grandinetti

Simple Harmonic Oscillator - Phase Space Trajectory

x(t) = x(0) cos๐œ”0t =โˆš

2E๐œ”2

0mcos๐œ”0t and v(t) = โˆ’๐œ”0x(0) sin(๐œ”0t) = โˆ’

โˆš2Em

sin๐œ”0t

State of oscillator specified by point in phase spaceE = constant means oscillator state always lies on ellipse

x2

2Eโˆ•๐œ…f+ v2

2Eโˆ•m= 1

Trajectory moves in clockwise direction.Trajectories with different E can never cross.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 19: Chapter 05 - Vibrational Motion - Grandinetti

Position probability distribution for harmonic oscillator

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 20: Chapter 05 - Vibrational Motion - Grandinetti

Position probability distribution for harmonic oscillatorScale x(t) by initial amplitude x(0), to obtain a function, y(t), that oscillates between y = โˆ’1and y = +1

y(t) = x(t)โˆ•x(0) = cos๐œ”0tCalculate normalized probability density, p(y), for finding the mass at any scaled positionbetween y = ยฑ1.Probability of finding mass in interval dy at given y is proportional to time spent in dy interval,

p(y) dy = b dt = b dtdydy

= b dy dtdy

= by

dy

b โ‰ก proportionality constant, and y โ‰ก speed at a given yUse derivative of y(t)

y(t) = โˆ’๐œ”0 sin๐œ”0tto obtain

p(y) = by(t)

= bโˆ’๐œ”0 sin๐œ”0t

= bโˆ’๐œ”0(1 โˆ’ cos2 ๐œ”0t)1โˆ•2

= bโˆ’๐œ”0(1 โˆ’ y2)1โˆ•2

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 21: Chapter 05 - Vibrational Motion - Grandinetti

Position probability distribution for harmonic oscillator

p(y) = bโˆ’๐œ”0(1 โˆ’ y2)1โˆ•2

Normalizing probability distribution gives

p(y) = 1๐œ‹(1 โˆ’ y2)1โˆ•2

+x-x 0

m-1.0 -0.5 0.0 0.5 1.0

2

0

4

6

8

10

Mass spends majority of time at maximumexcursions, that is, turning points where velocity isslowest and changes sign.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 22: Chapter 05 - Vibrational Motion - Grandinetti

Diatomic molecule vibration as Harmonic oscillator

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 23: Chapter 05 - Vibrational Motion - Grandinetti

Diatomic molecule vibration as Harmonic oscillator

Dashed line is harmonic oscillator potential. Solid line is Morse potential.V(r) has minimum at reโ€”where restoring force is zero.V(r) causes repulsive force at r < re and attractive force at r > re.V(r) increases steeply at r < re but levels out to constant at r > re.At r โ†’ โˆž there is no attractive force as V(r) has a slope of zero.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 24: Chapter 05 - Vibrational Motion - Grandinetti

Diatomic molecule vibration as Harmonic oscillatorTaylor series expansion of V(r) about equilibrium bond length, r = re, gives

V(r) โ‰ˆ V(re) +๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ>

0dV(re)

dr(r โˆ’ re) +

12!

d2V(re)dr2 (r โˆ’ re)2 +

13!

d3V(re)dr3 (r โˆ’ re)3 +โ‹ฏ

V(re) is the potential energy at equilibrium bond length.1st-order term is zero since no restoring force, F = โˆ’dV(re)โˆ•dr, at r = re

Stop expansion at the 3rd-order term and define 2 constants

๐œ…f =d2V(re)

dr2 and ๐›พf =d3V(re)

dr3

and write potential expansion as

V(r) โˆ’ V(re) โ‰ˆ12๐œ…f(r โˆ’ re)2 +

16๐›พf(r โˆ’ re)3 +โ‹ฏ

For small displacements drop 3rd-order term and potential looks like simple harmonic oscillator.For slightly larger displacements keep 3rd-order term to account for vibration anharmonicity.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 25: Chapter 05 - Vibrational Motion - Grandinetti

Diatomic molecule vibration equations of motion

Make harmonic oscillator approximation taking force on m1 and m2 as

F1 = โˆ’๐œ…f(r1 โˆ’ r2 + re) and F2 = โˆ’๐œ…f(r2 โˆ’ r1 โˆ’ re)

Equations of motion are 2 coupled differential equations:

m1d2r1

dt2= ๐œ…f(r2 โˆ’ r1 โˆ’ re) and m2

d2r2

dt2= โˆ’๐œ…f(r2 โˆ’ r1 โˆ’ re)

Transform to center of mass frame: M = m1 + m2 and R = 1M (m1r1 + m1r2)

Obtain 2 uncoupled differential equations,

M d2Rdt2

= 0, and ๐œ‡d2ฮ”rdt2

= โˆ’๐œ…fฮ”r

ฮ”r = r2 โˆ’ r1 โˆ’ re and ๐œ‡ is the reduced mass given by 1๐œ‡

= 1m1

+ 1m2

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 26: Chapter 05 - Vibrational Motion - Grandinetti

Diatomic molecule vibration equations of motionDifferential equation of motion describing the vibration

๐œ‡dฮ”r2(t)

dt2 + ๐œ…fฮ”r(t) = 0

Same differential equation of motion as simple harmonic oscillator.

Solutions takes the same form,

ฮ”r(t) = ฮ”r(0) cos๐œ”0t where ๐œ”0 =โˆš๐œ…fโˆ•๐œ‡

In spectroscopy vibrational frequencies are given in terms of the spectroscopic wavenumber,

๏ฟฝ๏ฟฝ =๐œ”0

2๐œ‹c0=

โˆš๐œ…fโˆ•๐œ‡

2๐œ‹c0, rearranges to ๐œ…f = ๐œ‡

(2๐œ‹c0๏ฟฝ๏ฟฝ

)2

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 27: Chapter 05 - Vibrational Motion - Grandinetti

Force constants for selected diatomic molecules

๐œ…f = ๐œ‡(2๐œ‹c0๏ฟฝ๏ฟฝ

)2

Bond ๐œ…f/(N/m) ๐œ‡โˆ•10โˆ’28 kg ๏ฟฝ๏ฟฝ/cmโˆ’1 Bond length/pmHโ€“H 570 8.367664 4401 74.1Dโ€“D 527 16.72247 2990 74.1

Hโ€“35Cl 478 16.26652 2886 127.5Hโ€“79Br 408 16.52430 2630 141.4Hโ€“127I 291 16.60347 2230 160.9

35Clโ€“35Cl 319 290.3357 554 198.879Brโ€“79Br 240 655.2349 323 228.4127Iโ€“127I 170 1053.649 213 266.7

16O=16O 1142 132.8009 1556 120.714Nโ‰ก14N 2243 116.2633 2331 109.412Cโ‰ก16O 1857 113.8500 2143 112.814N=16O 1550 123.9830 1876 115.123Naโ€“35Cl 117 230.3282 378 236.139Kโ€“35Cl 84 306.0237 278 266.7

23Naโ€“23Na 17 190.8770 158 307.8

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 28: Chapter 05 - Vibrational Motion - Grandinetti

Coupled Harmonic Oscillators and Normal Modes

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 29: Chapter 05 - Vibrational Motion - Grandinetti

Two coupled oscillators constrained to move in one dimension

m m

+x1-x1 0 +x2-x2 0

2 equal masses connected with 3 springs with force constants ๐œ…1 and ๐œ…2.3 springs are at equilibrium lengths when x1 = x2 = 0.Middle spring is also at equilibrium length whenever x2 = x1.Restoring force acting on left mass: F1 = โˆ’๐œ…1x1 + ๐œ…2(x2 โˆ’ x1)Restoring force acting on right mass: F2 = โˆ’๐œ…1x2 โˆ’ ๐œ…2(x2 โˆ’ x1)Coupled differential equations of motion for each mass:

mx1 + (๐œ…1 + ๐œ…2)x1 โˆ’ ๐œ…2x2 = 0 and mx2 โˆ’ ๐œ…2x1 + (๐œ…1 + ๐œ…2)x2 = 0

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 30: Chapter 05 - Vibrational Motion - Grandinetti

Two coupled oscillators: Normal ModesCoupled differential equations: mx1 + (๐œ…1 + ๐œ…2)x1 โˆ’ ๐œ…2x2 = 0 and mx2 โˆ’ ๐œ…2x1 + (๐œ…1 + ๐œ…2)x2 = 0

Uncoupled by coordinate transformation: ๐œ‰1 = x1 + x2 and ๐œ‰2 = x1 โˆ’ x2

๐œ‰1 and ๐œ‰2 are called normal mode coordinates

Gives 2 uncoupled equations: m๐œ‰1 + (๐œ…1 + 2๐œ…2)๐œ‰1 = 0 and m๐œ‰2 + ๐œ…1๐œ‰2 = 0

Substitute 2 proposed solutions: ๐œ‰1(t) = A1 cos(๐œ”1t + ๐œ™1) and ๐œ‰2(t) = A2 cos(๐œ”2t + ๐œ™2)

Obtain:((๐œ…1 + 2๐œ…2) โˆ’ m๐œ”2

1)

A1 cos(๐œ”1t + ๐œ™1) = 0 and(๐œ…1 โˆ’ m๐œ”2

2)

A2 cos(๐œ”2t + ๐œ™2) = 0

Equations true for all values of t if: (๐œ…1 + 2๐œ…2) = m๐œ”21 and ๐œ…1 = m๐œ”2

2

yields 2 normal mode frequencies: ๐œ”1 =โˆš(๐œ…1 + 2๐œ…2)โˆ•m and ๐œ”2 =

โˆš๐œ…1โˆ•m Note: ๐œ”1 > ๐œ”2

Normal mode is collective oscillation where all masses move with same oscillation frequency.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 31: Chapter 05 - Vibrational Motion - Grandinetti

Two coupled oscillators: Normal Modes

Imposing initial conditions:

๐œ‰1(0) = x1(0) + x2(0) and ๐œ‰2(0) = x1(0) โˆ’ x2(0), and ๏ฟฝ๏ฟฝ1(0) = ๏ฟฝ๏ฟฝ2(0) = 0

on solutions: ๐œ‰1(t) = A1 cos(๐œ”1t + ๐œ™1) and ๐œ‰2(t) = A2 cos(๐œ”2t + ๐œ™2)gives:

๐œ™1 = ๐œ™2 = 0 and A1 = ๐œ‰1(0) and A2 = ๐œ‰2(0)

๐œ‰1(t) = ๐œ‰1(0) cos(๐œ”1t) and ๐œ‰2(t) = ๐œ‰2(0) cos(๐œ”2t)

Converting normal mode coordinates back to original coordinates:

x1(t) =12

[๐œ‰2(0) cos(๐œ”2t) + ๐œ‰1(0) cos(๐œ”1t)

]and x2(t) =

12

[๐œ‰2(0) cos(๐œ”2t) โˆ’ ๐œ‰1(0) cos(๐œ”1t)

]Oscillation of each mass is linear combination of two normal mode oscillations.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 32: Chapter 05 - Vibrational Motion - Grandinetti

Two coupled oscillators: Normal ModesConsider two cases where only one normal mode is active:

๐œ‰2(0) = 0 or ๐œ‰1(0) = 0

x1(t) = 12๐œ‰1(0) cos(๐œ”1t)

x2(t) = โˆ’ 12๐œ‰1(0) cos(๐œ”1t)

โŽซโŽชโŽฌโŽชโŽญ out-of-phase,x1(t) = 1

2๐œ‰2(0) cos(๐œ”2t)

x2(t) = 12๐œ‰2(0) cos(๐œ”2t)

โŽซโŽชโŽฌโŽชโŽญ in-phase.

m m

m m

out of phase normal mode

m m

in phase normal mode

m m

m

m m

m

All motion in this system can be decomposed into linear combination of these two normal modes.P. J. Grandinetti Chapter 05: Vibrational Motion

Page 33: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysisConsider a harder problem

m1 m2

+x1-x1 0 +x2-x2 0

Both masses and all 3 spring constants are different.Simple coordinate transformation ๐œ‰1 = x1 + x2 and ๐œ‰2 = x1 โˆ’ x2 will not transform probleminto uncoupled differential equations.Need systematic approach for determining coordinate transformation (normal modes) thattransform coupled linear differential equations into uncoupled differential equations.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 34: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis

m1 m2

+x1-x1 0 +x2-x2 0

Define mass-weighted coordinates: q1 = m1โˆ•21 x1 and q2 = m1โˆ•2

2 x2Coupled differential equations are

q1 +(๐œ…1 + ๐œ…2)

m1q1 โˆ’

๐œ…2

(m2m1)1โˆ•2q2 = 0 and q2 โˆ’

๐œ…2

(m2m1)1โˆ•2q1 โˆ’

(๐œ…3 โˆ’ ๐œ…2)m2

q2 = 0

In matrix form:

โŽกโŽขโŽขโŽฃq1

q2

โŽคโŽฅโŽฅโŽฆโŸโŸโŸ

q

+

โŽกโŽขโŽขโŽขโŽขโŽขโŽฃ

(๐œ…1 + ๐œ…2)m1

โˆ’๐œ…2

(m2m1)1โˆ•2

โˆ’๐œ…2

(m2m1)1โˆ•2

(๐œ…3 + ๐œ…2)m2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ

K

โŽกโŽขโŽขโŽฃq1

q2

โŽคโŽฅโŽฅโŽฆโŸโŸโŸ

q

= 0

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 35: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysisAny coupled harmonic oscillator problem can be written in form: q + Kq = 0

K is a square n ร— n real symmetric (i.e., K12 = K21) matrix, q and q are n ร— 1 matrices.Similarity transformation of real n ร— n symmetric matrix into diagonal matrix, ๐šฒ.

LT KL =

โŽกโŽขโŽขโŽขโŽฃl11 l21 โ€ฆ ln1l12 l22 โ€ฆ ln2โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎl1n l2n โ€ฆ lnn

โŽคโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽฃ

K11 K12 โ€ฆ K1nK21 K22 โ€ฆ K2nโ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ

Kn1 Kn2 โ€ฆ Knn

โŽคโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽฃ

l11 l12 โ€ฆ l1nl21 l22 โ€ฆ l2nโ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎln1 ln2 โ€ฆ lnn

โŽคโŽฅโŽฅโŽฅโŽฆ =โŽกโŽขโŽขโŽขโŽฃ

๐œ†1 0 โ€ฆ 00 ๐œ†2 โ€ฆ 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ0 0 โ€ฆ ๐œ†n

โŽคโŽฅโŽฅโŽฅโŽฆ = ๐šฒ

โ–ถ Eigenvalues, ๐œ†i, of K along diagonal of ๐šฒ.โ–ถ Eigenvectors, li, of K along columns of L and along rows of LT .โ–ถ L is orthogonal matrix: product with its transpose, LT , is identity matrix, 1,

LLT =

โŽกโŽขโŽขโŽขโŽฃl11 l12 โ€ฆ l1nl21 l22 โ€ฆ l2nโ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎln1 ln2 โ€ฆ lnn

โŽคโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ

L

โŽกโŽขโŽขโŽขโŽฃl11 l21 โ€ฆ ln1l12 l22 โ€ฆ ln2โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎl1n l2n โ€ฆ lnn

โŽคโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ

LT

=

โŽกโŽขโŽขโŽขโŽฃ1 0 โ€ฆ 00 1 โ€ฆ 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ0 0 โ€ฆ 1

โŽคโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโŸ

1

= 1

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 36: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysisInsert identity matrix as 1 = LLT before and after K in matrix form of equations of motion:

q + Kq = q + (LLT )โŸโŸโŸ

1

K (LLT )โŸโŸโŸ

1

q = q + L (LTKL)โŸโŸโŸ

๐šฒ

(LTq) = 0

Multiplying both sides by LT , regroup, and define new matrix variables:

LT

โŽ›โŽœโŽœโŽœโŽq + L (LTKL)โŸโŸโŸ

๐šฒ

LTqโŽžโŽŸโŽŸโŽŸโŽ  = LT q

โŸโŸโŸQ

+ (LTKL)โŸโŸโŸ

๐šฒ

(LT q)โŸโŸโŸ

Q

= Q + ๐šฒ Q = 0

Q = LT q is linear transformation of q into Q, i.e., normal mode coordinatesDifferential equations in Q and ๐šฒ are uncoupled for each normal mode coordinate: Qi + ๐œ†iQi = 0Substitute in proposed solutions: Qi(t) = Ai cos(๐œ”it+๐œ™i) gives (๐œ†i โˆ’๐œ”2

i ) cos(๐œ”it+๐œ™i) = 0

Identify the ith normal mode frequency as ๐œ”i =โˆš๐œ†i

With initial conditions, solutions become Qi(t) = Qi(0) cos(๐œ”it

)P. J. Grandinetti Chapter 05: Vibrational Motion

Page 37: Chapter 05 - Vibrational Motion - Grandinetti

How do we determine eigenvalues, ๐œ†i, and the eigenvectors, li, from K?ith row in L is li eigenvector for ๐œ†i eigenvalue.

Kli =โŽกโŽขโŽขโŽขโŽฃ

K11 K12 โ€ฆ K1nK21 K22 โ€ฆ K2nโ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ

Kn1 Kn2 โ€ฆ Knn

โŽคโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽฃ

li1li2โ‹ฎlin

โŽคโŽฅโŽฅโŽฅโŽฆ = ๐œ†ili = ๐œ†i

โŽกโŽขโŽขโŽขโŽฃli1li2โ‹ฎlin

โŽคโŽฅโŽฅโŽฅโŽฆ = ๐œ†i

โŽกโŽขโŽขโŽขโŽฃ1 0 โ€ฆ 00 1 โ€ฆ 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ0 0 โ€ฆ 1

โŽคโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโŸ

1

โŽกโŽขโŽขโŽขโŽฃli1li2โ‹ฎlin

โŽคโŽฅโŽฅโŽฅโŽฆโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โŽกโŽขโŽขโŽขโŽฃK11 K12 โ€ฆ K1nK21 K22 โ€ฆ K2nโ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ

Kn1 Kn2 โ€ฆ Knn

โŽคโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ

K

โˆ’๐œ†i

โŽกโŽขโŽขโŽขโŽฃ1 0 โ€ฆ 00 1 โ€ฆ 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ0 0 โ€ฆ 1

โŽคโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโŸ

1

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽกโŽขโŽขโŽขโŽฃli1li2โ‹ฎlin

โŽคโŽฅโŽฅโŽฅโŽฆโŸโŸโŸ

li

= 0

Compactly written as(K โˆ’ ๐œ†i1) li = 0

Encountered same problem when diagonalizing moment of inertia tensor to determine PAS componentsand orientation.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 38: Chapter 05 - Vibrational Motion - Grandinetti

How do we determine eigenvalues, ๐œ†i, and the eigenvectors, li, from K?

Obtain eigenvalues by expanding determinant

|K โˆ’ ๐œ†i1| = 0

to get nth order polynomial equation in ๐œ† whose roots are eigenvalues.

Substitute each eigenvalue back into (K โˆ’ ๐œ†i1) li = 0 to get corresponding eigenvector.

Determining eigenvalues and eigenvectors of a matrix is usually done numerically. Softwarepackages utilizing various algorithms for matrix diagonalization are available in various problemsolving environments such as MatLab, Mathematica, or Python notebooks.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 39: Chapter 05 - Vibrational Motion - Grandinetti

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 40: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysisBack to our original problem

โŽกโŽขโŽขโŽฃq1

q2

โŽคโŽฅโŽฅโŽฆโŸโŸโŸ

q

+

โŽกโŽขโŽขโŽขโŽขโŽขโŽฃ

(๐œ…1 + ๐œ…2)m1

โˆ’๐œ…2

(m2m1)1โˆ•2

โˆ’๐œ…2

(m2m1)1โˆ•2

(๐œ…3 + ๐œ…2)m2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ

K

โŽกโŽขโŽขโŽฃq1

q2

โŽคโŽฅโŽฅโŽฆโŸโŸโŸ

q

= 0

To solve this problem we willdetermine eigenvalues, ๐œ†i and eigenvectors, li, of Kobtain normal mode frequencies from ๐œ”i =

โˆš๐œ†i

obtain relationship between mass-weighted and normal-mode coordinates from Q = LTq

To make solution more manageable, only illustrate the case where m1 = m2 = m and ๐œ…3 = ๐œ…1.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 41: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis - Find the Eigenvalues

Obtain eigenvalues by solving the determinant,|||||||||๐œ…1 + ๐œ…2

mโˆ’ ๐œ† โˆ’

๐œ…2m

โˆ’๐œ…2m

๐œ…1 + ๐œ…2m

โˆ’ ๐œ†

|||||||||=(๐œ…1 + ๐œ…2

mโˆ’ ๐œ†

)(๐œ…1 + ๐œ…2

mโˆ’ ๐œ†

)โˆ’

๐œ…22

m2 = 0

obtaining๐œ”2 = ๐œ† =

๐œ…1 + ๐œ…2 ยฑ ๐œ…2m

๐œ†1 = (๐œ…1 + 2๐œ…2)โˆ•m and ๐œ†2 = ๐œ…1โˆ•m

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 42: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis - Find the EigenvectorsObtain first eigenvector, associated with ๐œ†1 = (๐œ…1 + 2๐œ…2)โˆ•m, by expandingโŽกโŽขโŽขโŽฃ

(๐œ…1 + ๐œ…2)โˆ•m โˆ’ ๐œ†1 โˆ’๐œ…2โˆ•m

โˆ’๐œ…2โˆ•m (๐œ…1 + ๐œ…2)โˆ•m โˆ’ ๐œ†1

โŽคโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃ

l11

l12

โŽคโŽฅโŽฅโŽฆ = 0,

to get 2 identical equations:((๐œ…1 + ๐œ…2)โˆ•m โˆ’ ๐œ†1

)l11 โˆ’ (๐œ…2โˆ•m)l12 = 0, and โˆ’ (๐œ…2โˆ•m)l11 +

((๐œ…1 + ๐œ…2)โˆ•m โˆ’ ๐œ†1

)l12 = 0,

which simplify to l11 = โˆ’l12, i.e. two elements have equal magnitude and opposite sign.

l1 =[

l11l12

]= b

[1โˆ’1

]where b is some unknown constant.

Insisting that l1 be normalized, i.e.,โˆš

l211 + l212 = 1, gives b = 1โˆ•โˆš

2 and our 1st eigenvector is:

l1 =[

l11l12

]=

[1โˆ•

โˆš2

โˆ’1โˆ•โˆš

2

]P. J. Grandinetti Chapter 05: Vibrational Motion

Page 43: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis - Find the EigenvectorsSimilarly, second eigenvector, associated with ๐œ†2 = ๐œ…1โˆ•m, is given by

l2 =โŽกโŽขโŽขโŽฃ

l21

l22

โŽคโŽฅโŽฅโŽฆ =โŽกโŽขโŽขโŽฃ

1โˆ•โˆš

2

1โˆ•โˆš

2

โŽคโŽฅโŽฅโŽฆTaking these two results together, we construct the eigenvector matrix

L =[

l11 l21l12 l22

]=โŽกโŽขโŽขโŽฃ

1โˆ•โˆš

2 1โˆ•โˆš

2

โˆ’1โˆ•โˆš

2 1โˆ•โˆš

2

โŽคโŽฅโŽฅโŽฆFinally, we obtain solutions, in terms of the mass-weighted coordinates, as

q = LQ =โŽกโŽขโŽขโŽฃ

q1

q2

โŽคโŽฅโŽฅโŽฆ =โŽกโŽขโŽขโŽฃ

1โˆ•โˆš

2 1โˆ•โˆš

2

โˆ’1โˆ•โˆš

2 1โˆ•โˆš

2

โŽคโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃ

Q1(0) cos๐œ”1t

Q2(0) cos๐œ”2t

โŽคโŽฅโŽฅโŽฆP. J. Grandinetti Chapter 05: Vibrational Motion

Page 44: Chapter 05 - Vibrational Motion - Grandinetti

Web Apps by Paul Falstad

Coupled Oscillators

Web App Link: Coupled Oscillators

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 45: Chapter 05 - Vibrational Motion - Grandinetti

Polyatomic Molecule Vibrations

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 46: Chapter 05 - Vibrational Motion - Grandinetti

Polyatomic Molecule VibrationsNormal mode analysis of molecule with N atoms

Define each atomโ€™s displacement coordinates in PAS of moleculeโ€™s moment of inertia tensor withcenter of mass at origin.For example, for water molecule define

105ยฐ

a

b

๐œ‚1 = aO โˆ’ aO,e, ๐œ‚2 = bO โˆ’ bO,e, ๐œ‚3 = cO โˆ’ cO,e,๐œ‚4 = aH1

โˆ’ aH1,e, ๐œ‚5 = bH1โˆ’ bH1,e, ๐œ‚6 = cH1

โˆ’ cH1,e,๐œ‚7 = aH2

โˆ’ aH2,e, ๐œ‚8 = bH2โˆ’ bH2,e, ๐œ‚9 = cH2

โˆ’ cH2,e,

subscript e represents equilibrium coordinate.โ–ถ Further define mass-weighted displacement coordinates, q1,โ€ฆ , q3N , e.g.,

qi = m1โˆ•2i ๐œ‚i where

m1 = m2 = m3 = mO, m4 = m5 = m6 = mH , and m7 = m8 = m9 = mH .Derive equations of motion from kinetic and potential energy

ddt

(๐œ•K(q1,โ€ฆ , q3N)

๐œ•q

)+

๐œ•V(q1,โ€ฆ , q3N)๐œ•qi

= 0

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 47: Chapter 05 - Vibrational Motion - Grandinetti

Polyatomic Molecule VibrationsKinetic and Potential Energy in mass-weighted coordinates

Kinetic energy becomes

K = 12

3Nโˆ‘i=1

(dqidt

)2= 1

2qT q where qT =

[dq1dt

,โ€ฆ ,dq3N

dt

]and q is its transpose

Potential energy expanded as Taylor-series expansion

V(q) = V(0) +3Nโˆ‘i=1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ*

0(๐œ•V(0)๐œ•qi

)qi + 1

2

3Nโˆ‘i=1

3Nโˆ‘k=1

(๐œ•2V(0)๐œ•qi๐œ•qk

)qiqk +โ‹ฏ

Rewriting as

V(q) โ‰ˆ V(0) + 12

qT q where qT =[q1,โ€ฆ , q3N

], and q is its transpose

where is 3N ร— 3N matrix with elements given by

i,k =(๐œ•2V(0)๐œ•qi๐œ•qk

)P. J. Grandinetti Chapter 05: Vibrational Motion

Page 48: Chapter 05 - Vibrational Motion - Grandinetti

Polyatomic Molecule VibrationsNormal mode analysis of molecule with N atoms

Derive equations of motion from kinetic and potential energy

ddt

(๐œ•K(q1,โ€ฆ , q3N)

๐œ•q

)+

๐œ•V(q1,โ€ฆ , q3N)๐œ•qi

= 0

and obtain a set of 3N coupled differential equations (in matrix notation),

q + q = 0As before, heart of the problem is determining eigenvalues, ๐œ†i, and eigenvectors, li of .Orthogonal eigenvector matrix, L, transforms problem into 3N uncoupled differential equations,

q + q = q + (LLT )(LLT )q = 0 โŸถ LT q + (LTL) (LTq) = Q + ๐šฒQ = 0

โ–ถ solutions: Qi(t) = Qi(0) cos(๐œ”it)โ–ถ normal mode frequencies: ๐œ”i =

โˆš๐œ†i

โ–ถ normal mode coordinates: Q = LTqNormal modes with identical frequencies are called degenerate modes.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 49: Chapter 05 - Vibrational Motion - Grandinetti

Polyatomic Molecule VibrationsNormal mode analysis of molecule with N atoms

Since translational and rotational coordinates are included, 5 or 6 normal modefrequencies, depending on whether molecule is linear or not, respectively, will be zero.Potential and kinetic energy in terms of the vibrational normal modes coordinates are

V โˆ’ Ve โ‰ˆ12

QT๐šฒQ = 12

3Nโˆ’6โˆ‘i

๐œ†iQ2i , and K = 1

2QTQ = 1

2

3Nโˆ’6โˆ‘i

Q2i .

Keep in mind that approximations were made along the way.โ–ถ Ignored anharmonic (3rd and higher order) terms ignored in Taylor-series expansion of V(q).

Can still use matrix, but anharmonicities cause small couplings between the โ€œnormalmodes.โ€

โ–ถ Coordinate system fixed on molecule, i.e., PAS of moment of inertia tensor, is a rotatingframe. We neglected fictitious forces of such a frame. Coriolis forces will cause smallcouplings between the normal modes.

Primary task: obtain matrix and find its eigenvalues and eigenvectors.P. J. Grandinetti Chapter 05: Vibrational Motion

Page 50: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic molecule

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 51: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic molecule

a

b Define displacements in PAS of its moment of inertia tensor.

๐œ‚1 = aA โˆ’ aA,e, ๐œ‚2 = bA โˆ’ bA,e = 0, ๐œ‚3 = cA โˆ’ cA,e = 0,๐œ‚4 = aB โˆ’ aB,e, ๐œ‚5 = bB โˆ’ bB,e = 0, ๐œ‚6 = cB โˆ’ cB,e = 0,

From 6 displacement coordinates, define mass-weighted coordinates,qi = m1โˆ•2

i ๐œ‚i, where m1 = m2 = m3 = mA, and m4 = m5 = m6 = mB.

Since ฮ”r = r โˆ’ re = ๐œ‚4 โˆ’ ๐œ‚1 = q1โˆ•m1โˆ•21 โˆ’ q4โˆ•m1โˆ•2

4 we obtain potential energy function

V โˆ’ Ve โ‰ˆ12๐œ…f(r โˆ’ re)2 = 1

2๐œ…f

(q1

m1โˆ•21

โˆ’q4

m1โˆ•24

)2

= 12๐œ…f

(q2

1m1

โˆ’2q1q4

(m1m4)1โˆ•2+

q24

m4

)Identify non-zero matrix elements of as

11 = ๐œ…fโˆ•m1, and 44 = ๐œ…fโˆ•m4, and 14 = โˆ’๐œ…fโˆ•(m1m4

)1โˆ•2

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 52: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic moleculeEquations of motion in matrix form is

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

q1

q2

q3

q4

q5

q6

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŸโŸโŸ

q

+

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐œ…f

m10 0 โˆ’

๐œ…f(m1m4

)1โˆ•20 0

0 0 0 0 0 0

0 0 0 0 0 0

โˆ’๐œ…f(

m1m4)1โˆ•2

0 0๐œ…f

m40 0

0 0 0 0 0 0

0 0 0 0 0 0

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโŸ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

q1

q2

q3

q4

q5

q6

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŸโŸโŸ

q

= 0

Note: Four equations are already uncoupled and have eigenvalues of ๐œ†i = 0.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 53: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic moleculeRemaining equations of motion are[

q1q4

]+โŽกโŽขโŽขโŽฃ

๐œ…fโˆ•m1 โˆ’๐œ…fโˆ•(m1m4

)1โˆ•2

โˆ’๐œ…fโˆ•(m1m4

)1โˆ•2 ๐œ…fโˆ•m4

โŽคโŽฅโŽฅโŽฆ[

q1q4

]= 0

Get eigenvalues from solving|||||||๐œ…fโˆ•m1 โˆ’ ๐œ† โˆ’๐œ…fโˆ•

(m1m4

)1โˆ•2

โˆ’๐œ…fโˆ•(m1m4

)1โˆ•2 ๐œ…fโˆ•m4 โˆ’ ๐œ†

||||||| = (๐œ…fโˆ•m1 โˆ’ ๐œ†)(๐œ…fโˆ•m4 โˆ’ ๐œ†) โˆ’ ๐œ…2f โˆ•

(m1m4

)= 0

gives ๐œ† = 0 and๐œ…f๐œ‡

where 1๐œ‡

= 1m1

+ 1m4

=m1 + m4

m1m4= M

m1m4, or ๐œ‡ = (m1m4)โˆ•M,

๐œ‡ is the reduced mass, and M = m1 + m4 is the total mass.5 out of 6 eigenvalues are zeroโ€”associated with 3 translational and 2 rotational degrees offreedom.1 out of 6 degrees of freedom is associated with vibration with ๐œ”1 =

โˆš๐œ…fโˆ•๐œ‡, and normal mode

solution Q1(t) = Q1(0) cos(๐œ”1t

)P. J. Grandinetti Chapter 05: Vibrational Motion

Page 54: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic molecule

Turning to normal mode eigenvectors. If we substitute the eigenvalue ๐œ†1 = ๐œ…fโˆ•๐œ‡ into

( โˆ’ ๐œ†11)l1 =

โŽกโŽขโŽขโŽขโŽฃ๐œ…fโˆ•m1 โˆ’ ๐œ†1 โˆ’๐œ…fโˆ•

(m1m4

)1โˆ•2

โˆ’๐œ…fโˆ•(m1m4

)1โˆ•2 ๐œ…fโˆ•m4 โˆ’ ๐œ†1

โŽคโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃ

l11

l14

โŽคโŽฅโŽฅโŽฆ = 0,

we obtain two equivalent equations, which simplify to l11 = โˆ’(m4โˆ•m1

)1โˆ•2 l14Write eigenvector as

l1 =โŽกโŽขโŽขโŽฃ

l11

l14

โŽคโŽฅโŽฅโŽฆ = bโŽกโŽขโŽขโŽฃโˆ’(m4โˆ•m1

)1โˆ•2

1

โŽคโŽฅโŽฅโŽฆ โŸถ l1 =

โŽกโŽขโŽขโŽขโŽฃ(๐œ‡โˆ•m1

)1โˆ•2

โˆ’(๐œ‡โˆ•m4

)1โˆ•2

โŽคโŽฅโŽฅโŽฅโŽฆwhere b =

(m4โˆ•M

)1โˆ•2 after normalization.

Same approach gives

l2 =

โŽกโŽขโŽขโŽขโŽฃ(๐œ‡โˆ•m4

)1โˆ•2

(๐œ‡โˆ•m1

)1โˆ•2

โŽคโŽฅโŽฅโŽฅโŽฆP. J. Grandinetti Chapter 05: Vibrational Motion

Page 55: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic moleculeBring eigenvectors together to create transformation between mass-weighted and normalcoordinates:

Q = LTq =โŽกโŽขโŽขโŽฃ

Q1

Q4

โŽคโŽฅโŽฅโŽฆ =โŽกโŽขโŽขโŽขโŽขโŽขโŽฃ

(๐œ‡

m1

)1โˆ•2โˆ’(

๐œ‡m4

)1โˆ•2

(๐œ‡

m4

)1โˆ•2 (๐œ‡

m1

)1โˆ•2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃ

q1

q4

โŽคโŽฅโŽฅโŽฆThe Q1 coordinate expands to

Q1 = (๐œ‡)1โˆ•2 ( q1โˆ•m1โˆ•21

โŸโŸโŸ๐œ‚1

โˆ’ q4โˆ•m1โˆ•24

โŸโŸโŸ๐œ‚4

)= (๐œ‡)1โˆ•2 ( ๐œ‚1 โˆ’ ๐œ‚4

โŸโŸโŸฮ”r

)= (๐œ‡)1โˆ•2 ฮ”r

Rearranging gives vibrational motion solution:

ฮ”r(t) = (๐œ‡)โˆ’1โˆ•2 Q1(t) = (๐œ‡)โˆ’1โˆ•2 Q1(0) cos(๐œ”1t

)P. J. Grandinetti Chapter 05: Vibrational Motion

Page 56: Chapter 05 - Vibrational Motion - Grandinetti

Normal mode analysis of diatomic moleculeQ4 normal mode (with ๐œ†4 = 0) can be expanded as

Q4 = (๐œ‡)1โˆ•2(

q1โˆ•m1โˆ•24 + q4โˆ•m1โˆ•2

1

)= 1

M1โˆ•2

(m1๐œ‚1 + m4๐œ‚4

)= 1

M1โˆ•2

(mA(aA โˆ’ aA,e) + mB(aB โˆ’ aB,e)

)Recalling center of mass along the a axis,

aCOM = (mAaA + mBaB)โˆ•M and aCOM,e = (mAaA,e + mBaB,e)โˆ•M = 0

where center of mass when atoms are at equilibrium coordinates is zero, gives

Q4 = M1โˆ•2

(mAaA + mBaB

)M

= M1โˆ•2aCOM

Since ๐œ†4 = 0, equation of motion is Q4 = 0

initial condition of aCOM = Q4 = 0 means aCOM cannot change in time.

๐œ†i = 0 for 5 normal modes associated with translation and rotation, so no change in center ofmass or PAS orientation as molecule vibrates.

P. J. Grandinetti Chapter 05: Vibrational Motion

Page 57: Chapter 05 - Vibrational Motion - Grandinetti

Web Videos

Web Video Link: Vibration of Polyatomic MoleculesWeb Links: Crash Course Physics: Simple Harmonic Motion

P. J. Grandinetti Chapter 05: Vibrational Motion