Download - Approximation of functions of large matrices. Part I. Computational aspectssimoncin/sds08_I.pdf · Approximation of functions of large matrices. Part I. Computational aspects V. Simoncini

Transcript

Approximation of functions of large matrices.

Part I. Computational aspects

V. Simoncini

Dipartimento di Matematica, Universita di Bologna

and CIRSA, Ravenna, Italy

[email protected]

1

The problem

Given A ∈ Rn×n, v ∈ R

n and f sufficiently smooth function,

approximate

x = f(A)v

⋆ A large dimension, ‖v‖ = 1

⋆ A sym. pos. (semi)def., or A positive real

⋆ f(A)v vs f(A)

Projection-type methods

K approximation space, m = dim(K) V ∈ Rn×m s.t. K = range(V )

x = f(A)v ≈ xm = V f(V ⊤AV )(V ⊤v)

2

The problem

Given A ∈ Rn×n, v ∈ R

n and f sufficiently smooth function,

approximate

x = f(A)v

⋆ A large dimension, ‖v‖ = 1

⋆ A sym. pos. (semi)def., or A positive real

⋆ f(A)v vs f(A)

Projection-type methods

K approximation space, m = dim(K) V ∈ Rn×m s.t. K = range(V )

x = f(A)v ≈ xm = V f(V ⊤AV )(V ⊤v)

3

Numerical approximation.

f(A)v ≈ x

Important issues:

⋆ Role of f in the approximation quality

⋆ Role of A in the approximation quality

⋆ Efficiency ?

⋆ Measures/Estimates of accuracy?

4

Standard Krylov subspace approximation

K = Km(A, v)

For Hm = V ⊤AV , v = V e1 and V ⊤V = Im:

xm = Vmf(Hm)e1

Polynomial approximation: xm = pm−1(A)v

(pm−1 interpolates f at eigenvalues of Hm)

(alternatives: other polyns or interpolation points; e.g., Moret & Novati, ’01-’04 )

Note: Procedure valid for A symmetric and nonsymmetric

⋆ Numerical and theoretical results since mid ’80s.

5

Typical convergence estimates in Km

Approximation of f(λ) = exp(−λ) (Hochbruck & Lubich ’97)

A sym. semidef. σ(A) ⊆ [0, 4ρ], xm = Vm exp(−Hm)e1,

‖f(A)v − xm‖ ≤ 10e−m2/(5ρ),√

4ρ ≤ m ≤ 2ρ

‖f(A)v − xm‖ ≤ 10

ρe−ρ

(eρ

m

)m

, m ≥ 2ρ

see also Tal-Ezer ’89, Druskin & Knizhnerman ’89, Stewart & Leyk ’96

Approximation of f(λ) = λ−1/2, exp(−√

λ), ... :

‖f(A)v − Vmf(−Hm)e1‖ = O(exp(−2m

√λmin

λmax))

6

Typical convergence estimates in Km

Approximation of f(λ) = exp(−λ) (Hochbruck & Lubich ’97)

A sym. semidef. σ(A) ⊆ [0, 4ρ], xm = Vm exp(−Hm)e1,

‖f(A)v − xm‖ ≤ 10e−m2/(5ρ),√

4ρ ≤ m ≤ 2ρ

‖f(A)v − xm‖ ≤ 10

ρe−ρ

(eρ

m

)m

, m ≥ 2ρ

see also Tal-Ezer ’89, Druskin & Knizhnerman ’89, Stewart & Leyk ’96

Approximation of f(λ) = λ−1/2, exp(−√

λ), ... :

‖f(A)v − Vmf(−Hm)e1‖ = O(exp(−2m

√λmin

λmax))

7

...When things are not so easy

‖ exp(−A)v − Vm exp(−Hm)e1‖ A ∈ R400×400, ‖A‖ = 105

0 20 40 60 80 100 120 14010

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Krylov subspace dimension

err

or

no

rm

‖ exp(−A)v − Vm exp(−Hm)e1‖ ≤ 10e−m2/(5ρ),√

4ρ ≤ m ≤ 2ρ

where σ(A) ⊆ [0, 4ρ]

8

Acceleration Procedures: Shift-Invert Lanczos

A symmetric pos. (semi)def.

Choose γ s.t. (I + γA) is invertible, and construct

K = Km((I + γA)−1, v), van den Eshof-Hochbruck ’06, Moret-Novati ’04

with Tm = V ⊤(I + γA)−1V , v = V e1 and V ⊤V = Im

xm = Vmf(1

γ(T−1

m − Im))e1

Rational approximation: xm = pm−1((I + γA)−1)v

Choice of γ: γ = 1/√

λminλmax (Moret, tr 2005)

9

Acceleration Procedures: Extended Krylov

For A nonsingular,

K = Km1(A, v) + Km2

(A−1, A−1v), Druskin-Knizhnerman 1998, A sym.

Note: K = A−(m2−1)Km1+m2−1(A, v)

Algorithm (augmentation-style)

- Fix m2 ≪ m1

- Run m2 steps of Inverted Lanczos

- Run m1 steps of Standard Lanczos + orth.

10

Extended Krylov: a new implementation

m1 = m2 = m not fixed a priori

K = Km(A, v) + Km(A−1, A−1v)

⋆ Arnoldi-type recurrence:

- U1 ← [v, A−1v] + orth

- Uj+1 ← [AUj(:, 1), A−1Uj(:, 2)] + orth j = 1, 2, . . .

⋆ Recurrence to cheaply compute Tm = U⊤mAUm, Um = [U1, . . . , Um]

⋆ Compute xm = Umf(Tm)e1

Simoncini, 2007

11

Extended Krylov: Convergence theory I

f satisfying f(z) =

∫ 0

−∞

1

z − ζdµ(ζ), z ∈ C\] −∞, 0]

(with convenient measure dµ(ζ))

Druskin-Knizhnerman 1998:

A sym: ‖x − xm‖ = O(m2 exp(−2m 4

√λmin

λmax

))

12

Extended Krylov: Convergence theory II

A new approximation result for nonsingular A:

Let f = f1 + f2, a ∈ [0,∞)

‖f1(z) −m−1∑

k=0

γ1,kF1,k(z)‖ ≤ c1Φ1(−a)−m,

‖f2(z) −m−1∑

k=0

γ2,kF2,k(z−1)‖ ≤ c2Φ2(−1

a)−m,

Φ1, F1,k conformal mapping and Faber Polynomial w.r.to W (A)

Φ2, F2,k conformal mapping and Faber Polynomial w.r.to W (A−1)

From this, for A symmetric: ‖x − xm‖ = O(exp(−2m 4

√λmin

λmax

))

⋆ Currently working on A nonsymmetric

13

Convergence rate. A ∈ R400×400 symmetric. f(λ) = λ−1/2

0 5 10 15 20 25 3010

−12

10−10

10−8

10−6

10−4

10−2

100

dimension of approximation space

no

rm o

f e

rro

r

σ(A) = [0.01, 0.9]

0 5 10 15 20 25 3010

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

dimension of approximation space

no

rm o

f e

rro

r

σ(A) = [1, 50]

Uniform spectral distribution

14

Experiment. A ∈ R400×400 normal. f(λ) = λ−1/2

0 5 10 15 20 25 30 35 40 45 5010

−14

10−12

10−10

10−8

10−6

10−4

10−2

100

dimension of approximation space

no

rm o

f e

rro

r

ellipse a1=0.097, a2=0.01, c=0.1

true a=−sqrt(l

1ln)

a optimal

σ(A) on an elliptic curve in C+ with center on real axis

15

Log-uniform spectral distribution.

f(3)(z) = exp(−√z), f(5)(z) = z−1/2, f(7)(z) = z−1/4

100

105

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 3 −1

100

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 3 −2

100

105

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 5 −1

100

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 5 −2

100

105

0

100

200

300

400

sp

ace

dim

. a

t co

nve

rge

nce

case 7 −1

100

0

100

200

300

400sp

ace

dim

. a

t co

nve

rge

nce

case 7 −2

shift−invert Lanczos(0.1)

SI Lanczos(γ)Standard Krylov

Extended Krylov

cases *-1: λmin = 10−1 cases *-2: λmin = 10−4 x-axis: λmax = 10k

16

SI-Lanczos and dependence on parameter γ

0 50 100 150 200 250 300

10−10

10−8

10−6

10−4

10−2

100

f(x) = exp(−sqrt(x)), λmin

= 1e−1, λmax

= 1e6

SI(0.1)SI(1) SI(100)

SI(10)

EK

SI(γ)

Lanczos

SI(0.01)

0 50 100 150 200 250 30010

−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

f(x) = exp(−sqrt(x)), λmin

= 1e−4, λmax

= 1e3

SI(0.01)

SI(0.1)

SI(γ)

Lanczos

EK

Log-uniform spectral distribution

17

Comparisons: CPU Time in Matlab

A ∈ R4900×4900: L(u) = − 1

10uxx − 100uyy, in [0, 1]2, hom.b.c.

σ(A) ∈ [9.6 · 102, 1.96 · 106], f(λ) = λ−1/2

Method space dim. CPU Time

Standard Krylov 185 16.02

Rational (Zolotarev) 0.50

SI-Lanczos(0.001) 62 1.00

SI-Lanczos (1e-5) 49 0.60

SI-Lanczos (γ=2e-5) 33 0.32

Extended Krylov 32 0.20

No reorthogonalization. Direct solves. Tol = 10−12.

18

A nonsymmetric matrix. f(z) =√

z

A ∈ R900×900 : L(u) = −100uxx − uyy + 10xux in [0, 1]2, hom.b.c.

0 10 20 30 40 50 60 70 80 90 10010

−10

10−8

10−6

10−4

10−2

100

102

dimension of approximation space

no

rm o

f e

rro

r

SI−Arnoldi(1e−5)

SI−Arnoldi(1e−3)

Extended KrylovSI−Arnoldi(2e−5)

σ(A) ⊂ R, λmin = 9.2 · 102, λmax = 3.6 · 105

Full orthogonalization

19

Conclusions and work in progress

• Great potential of using f(A)v in application problems

• Exploit low cost of using A instead of f(A)

• Further developments in acceleration techniques

• The case of A nonsymmetric (preliminary encouraging tests)

⋆ New implementation of the Extended Krylov method

⋆ Improved convergence bounds for A symmetric

⋆ New convergence results for A nonsymmetric (to be completed)

⋆ Performance:

- Does not depend on parameters

- Competitive for A sym, and nonsym. (preliminary tests)

20

Conclusions and work in progress

• Great potential of using f(A)v in application problems

• Exploit low cost of using A instead of f(A)

• Further developments in acceleration techniques

• The case of A nonsymmetric (preliminary encouraging tests)

⋆ New implementation of the Extended Krylov method

⋆ Improved convergence bounds for A symmetric

⋆ New convergence results for A nonsymmetric (to be completed)

⋆ Performance:

- Does not depend on parameters

- Competitive for A sym, and nonsym. (preliminary tests)

21