Download - Alocaton Of Risk Capital

Transcript
Page 1: Alocaton Of Risk Capital

Coh

ere

nt a

lloca

tion o

f risk cap

ital ∗

Mich

el D

enault

´ Eco

le d

es H

.E.C

. (Montr´e

al)

January

20

01

Orig

inal v

ersio

n:S

ep

tem

ber 1

999

Ab

stract

The a

lloca

tion p

roble

m ste

ms fro

m th

e d

iversifi

catio

n e

ffect o

bse

rved

in risk m

easu

rem

ents o

f financia

l portfo

lios: th

e su

m o

f the

“risks”

of m

any

portfo

lios

is la

rger th

an

the

“risk” o

f the

sum

of th

e p

ortfo

lios. T

he

allo

catio

n p

roble

m is

to a

pportio

n th

is

div

ersifi

catio

n a

dvanta

ge

to th

e p

ortfo

lios

in a

fair m

anner, y

ield

ing, fo

r each

portfo

lio, a

risk a

ppra

isal th

at a

ccounts

for

div

ersifi

catio

n.

Our a

ppro

ach

is a

xio

matic, in

the

sense

that w

e fi

rst arg

ue

for th

e n

ece

ssary

pro

pertie

s o

f an

allo

catio

n p

rincip

le, a

nd

then

consid

er p

rincip

les th

at fu

lfill th

e p

ropertie

s. Importa

nt re

sults

from

the

are

a o

f gam

e th

eory

find

a d

irect a

pplica

tion. O

ur m

ain

re

sult is th

at th

e A

um

ann-S

haple

y v

alu

e is b

oth

a co

here

nt a

nd p

ractica

l appro

ach

to fi

nancia

l risk allo

catio

n.

Keyw

ord

s: a

lloca

tion

of ca

pita

l, coh

ere

nt risk

measu

re, risk-a

dju

sted

perfo

rman

ce m

easu

re; g

am

e th

eory

, fuzzy

gam

es,

Sh

ap

ley v

alu

e, A

um

an

n-S

hap

ley p

rices.

∗The a

uth

or e

xpre

sses sp

ecia

l than

ks to F. D

elb

aen, w

ho p

rovid

ed

both

the in

itial in

spira

tion

for th

is work

and

gen

ero

us su

bse

qu

en

t ideas a

nd

ad

vice

, an

d to

Ph. A

rtzner fo

r dra

win

g h

is atte

ntio

n to

Au

bin

’s litera

ture

on fu

zzy g

am

es. D

iscussio

ns w

ith P. E

mbre

chts, H

.-J. L¨

Page 2: Alocaton Of Risk Capital

uth

i, D

. Stra

um

ann

, an

d S

. Bern

eg

ger h

ave

been

most fru

itful. Fin

ally

, he

gra

tefu

lly a

cknow

led

ges th

e fi

nan

cial su

pport o

f both

RiskLa

b (S

witze

rland

) and

the

S.S

.H.R

.C. (C

anad

a)

´´

†Assista

nt Pro

fesso

r, Eco

le d

es H

aute

s Etu

des C

om

mercia

les, 3

00

0 ch

. de la

ote

-Sain

te-C

ath

erin

e, M

ontr´

eal, C

an

ada, H

3T 2

A7

; mich

el.d

enau

[email protected]

; (51

4) 3

40

-71

61

1

Intro

ductio

n

Th

e th

em

e o

f this

pap

er is

the

sharin

g o

f costs

betw

een

the

con

stituen

ts o

f a fi

rm. W

e ca

ll this

sharin

g “a

lloca

tion”, a

s it is

assu

med

that a

hig

her a

uth

ority

exists w

ithin

the fi

rm, w

hich

has a

n in

tere

st in u

nila

tera

lly d

ivid

ing

the fi

rm’s co

sts betw

een

the

con

stituen

ts. We w

ill refe

r to th

e co

nstitu

en

ts as p

ortfo

lios, b

ut b

usin

ess u

nits co

uld

just a

s well b

e u

nd

ersto

od

.

As a

n in

sura

nce

ag

ain

st the

un

certa

inty

of th

e n

et w

orth

s (or e

qu

ivale

ntly

, the

pro

fits) o

f the

portfo

lios, th

e fi

rm co

uld

well,

and

wou

ld o

ften

be re

gu

late

d to

, hold

an

am

ou

nt o

f riskless in

vestm

en

ts. We w

ill call th

is bu

ffer, th

e risk ca

pita

l of th

e fi

rm. Fro

m

a fi

nan

cial p

ersp

ectiv

e, h

old

ing

an

am

ou

nt o

f mon

ey d

orm

an

t, i.e. in

extre

mely

low

risk, low

retu

rn m

on

ey in

strum

ents, is se

en

as a

bu

rden

. It is th

ere

fore

natu

ral to

look

for a

fair a

lloca

tion

of th

at b

urd

en

betw

een

the

con

stituen

ts, esp

ecia

lly w

hen

the

allo

catio

n p

rovid

es

a b

asis

for p

erfo

rman

ce co

mp

ariso

ns

of th

e co

nstitu

en

ts b

etw

een

them

selv

es

(for e

xam

ple

in a

rora

c

ap

pro

ach

).

Th

e p

rob

lem

of a

lloca

tion

is inte

restin

g a

nd

non

-trivia

l, beca

use

the

sum

of th

e risk

cap

itals o

f each

con

stituen

t, is usu

ally

larg

er th

an

the

risk ca

pita

l of th

e fi

rm ta

ken

as a

wh

ole

. Th

at is, th

ere

is a d

eclin

e in

tota

l costs to

be

exp

ecte

d b

y p

oolin

g th

e

activ

ities

of th

e fi

rm, a

nd

this

ad

van

tag

e n

eed

s to

be

share

d fa

irly b

etw

een

the

con

stituen

ts. We

stress

fairn

ess, a

s a

ll

con

stituen

ts are

from

the

sam

e fi

rm, a

nd

non

e sh

ou

ld re

ceiv

e p

refe

ren

tial tre

atm

en

t for th

e p

urp

ose

of th

is allo

catio

n e

xercise

.

In th

at se

nse

, the

risk ca

pita

l of a

con

stituen

t, min

us its a

lloca

ted

share

of th

e d

iversifi

catio

n a

dvan

tag

e, is e

ffectiv

ely

a fi

rm-

inte

rnal risk m

easu

re.

Page 3: Alocaton Of Risk Capital

Th

e a

lloca

tion

exe

rcise is b

asica

lly p

erfo

rmed

for co

mp

ariso

n p

urp

ose

s: know

ing

the p

rofit g

en

era

ted

and

the risk ta

ken

by

the co

mp

on

en

ts of th

e fi

rm, a

llow

s for a

mu

ch w

iser co

mp

ariso

n th

an

know

ing

on

ly o

f pro

fits. T

his id

ea o

f a rich

er in

form

atio

n

set u

nd

erlie

s the p

op

ula

r con

cep

ts of risk-a

dju

sted

perfo

rmance

measu

res (ra

pm

) and

retu

rn o

n risk-a

dju

sted

cap

ital (ro

rac).

Our a

pp

roach

of th

e a

lloca

tion

pro

ble

m is

axio

matic, in

a se

nse

that is

very

simila

r to th

e a

pp

roach

take

n b

y A

rtzner,

Delb

aen

, Eb

er a

nd

Heath

[3]. Ju

st as th

ey

defin

ed

a se

t of n

ece

ssary

“good

qu

alitie

s” of a

risk m

easu

re, w

e su

gg

est a

set o

f

pro

pertie

s to b

e fu

lfille

d b

y a

fair risk ca

pita

l allo

catio

n p

rincip

le. T

heir se

t of a

xio

ms d

efin

es th

e co

here

nce

of risk m

easu

res, o

ur

set o

f axio

ms d

efines th

e co

here

nce

of risk

cap

ital a

lloca

tion

prin

ciple

s. (Incid

en

tally

, the sta

rting

poin

t of o

ur d

evelo

pm

en

t, the

risk cap

itals o

f the fi

rm a

nd

its con

stituents, is a

cohere

nt risk m

easu

re)

We m

ake

, thro

ug

hou

t this a

rticle, lib

era

l use

of th

e co

nce

pts a

nd

resu

lts of g

am

e th

eory. A

s we h

op

e to

con

vin

ce th

e re

ad

er,

gam

e th

eory

pro

vid

es a

n e

xcelle

nt fra

mew

ork

on

which

to ca

st the

allo

catio

n p

rob

lem

, an

d a

elo

qu

en

t lan

gu

ag

e to

discu

ss it.

Th

ere

is an

imp

ressiv

e a

mou

nt o

f litera

ture

on

the

allo

catio

n p

rob

lem

with

in th

e a

rea

of g

am

e th

eory

, with

ap

plica

tion

s ran

gin

g

from

tele

ph

on

e b

illing

to a

irport la

nd

ing

fees a

nd

to w

ate

r treatm

en

t costs. T

he

main

sou

rces fo

r this a

rticle a

re th

e se

min

al

article

s of S

hap

ley [2

8] a

nd

[30

] on

on

e h

an

d; a

nd

the

book o

f Au

bin

[5], th

e a

rticles o

f Bille

ra a

nd

Heath

[9]), a

nd

Mirm

an

an

d

Taum

an

[18

], on

the o

ther h

and

.

At a

more

gen

era

l level, th

e in

tere

sted

read

er m

ay co

nsu

lt a g

am

e th

eory

refe

ren

ce a

s the n

ice O

sborn

e a

nd

Ru

bin

stein

[21

],

the

ed

ited

book o

f Roth

[24

] (inclu

din

g th

e su

rvey o

f Tau

man

[32

]), or th

e su

rvey a

rticle o

f You

ng

[33

], wh

ich co

nta

in le

gio

ns o

f

refe

ren

ces o

n th

e su

bje

ct.

Th

e a

rticle is d

ivid

ed

as fo

llow

s. We

reca

ll the

conce

pt o

f coh

ere

nt risk

measu

re in

the

next se

ction

. Sectio

n 3

pre

sen

ts the

idea o

f the co

here

nce

in a

lloca

tion

. Gam

e th

eory

con

cep

ts are

intro

du

ced

in se

ction

4, w

here

the risk

cap

ital a

lloca

tion

pro

ble

m

is mod

elle

d a

s a g

am

e b

etw

een

portfo

lios. W

e tu

rn in

sectio

n 5

to fu

zzy g

am

es, a

nd

the

coh

ere

nce

of a

lloca

tion

is exte

nd

ed

to

that se

tting

. This is w

here

the A

um

an

n-S

hap

ley v

alu

e e

merg

es a

s a m

ost a

ttractiv

e a

lloca

tion

prin

ciple

. We tre

at th

e q

uestio

n o

f

the

non

-neg

ativ

ity o

f allo

catio

ns in

sectio

n 6

. Th

e fi

nal se

ction

is devote

d to

a “to

y e

xam

ple

” of a

coh

ere

nt risk

measu

re b

ase

d

on

the m

arg

in ru

les o

f the S

EC

, and

to a

lloca

tion

s that a

rise w

hile

usin

g th

at m

easu

re.

Rem

ark: B

ew

are

that tw

o co

nce

pts o

f coh

ere

nce

are

discu

ssed

in th

is pap

er: th

e co

here

nce

of risk

measu

res w

as in

trod

uce

d

Page 4: Alocaton Of Risk Capital

in [3

], bu

t is use

d it h

ere

as w

ell; th

e co

here

nce

of a

lloca

tion

s is intro

du

ced

here

.

Risk m

easu

re a

nd risk ca

pita

l

In th

is pap

er, w

e fo

llow

Artzn

er, D

elb

aen

, Eb

er a

nd

Heath

[3] in

rela

ting

the

risk o

f a fi

rm to

the

un

certa

inty

of its fu

ture

worth

.

Th

e d

an

ger, in

here

nt to

the id

ea o

f risk, is that th

e fi

rm’s w

orth

reach

such

a lo

w n

et w

orth

at a

poin

t in th

e fu

ture

, that it m

ust

stop

its activ

ities. R

isk is then

defined

as a

ran

dom

varia

ble

X re

pre

sen

ting

a fi

rm’s n

et w

orth

at a

specifi

ed

poin

t of th

e fu

ture

.

A risk

measu

re ρ

qu

an

tifies th

e le

vel o

f risk. Sp

ecifi

cally

, it is a m

ap

pin

g fro

m a

set o

f ran

dom

varia

ble

s (risks) to th

e re

al

nu

mb

ers: ρ

(X) is th

e a

mou

nt o

f a n

um

´era

ire (e

.g. ca

sh d

olla

rs) wh

ich, a

dd

ed

to th

e fi

rm’s a

ssets, e

nsu

res th

at its fu

ture

worth

be a

ccep

tab

le to

the re

gu

lato

r, the ch

ief risk o

ffice

r or o

thers. (Fo

r a d

iscussio

n o

f acce

pta

ble

worth

s, see [3

]) Cle

arly

, the h

eftie

r

the

req

uire

d sa

fety

net is, th

e riskie

r the

firm

is perce

ived

. We

call ρ

(X) th

e risk

cap

ital o

f the

firm

. Th

e risk

cap

ital a

lloca

tion

pro

ble

m is to

allo

cate

the a

mou

nt o

f risk ρ(X

) betw

een th

e p

ortfo

lios o

f the fi

rm.

We

will a

ssum

e th

at a

ll rand

om

varia

ble

s a

re d

efin

ed

on

a fi

xed

pro

bab

ility sp

ace

(Ω, A

, P). B

y L

∞(Ω, A

, P), w

e m

ean

the

space

of b

ou

nd

ed

rand

om

varia

ble

s; we

assu

me

that ρ

is o

nly

defin

ed

on

that sp

ace

. Th

e re

ad

er w

ho

wish

es to

do

so ca

n

gen

era

lize th

e re

sults a

lon

g th

e lin

es o

f [12

].

In th

eir p

ap

ers, A

rtzner, D

elb

aen

, Eb

er a

nd

Heath

([3], [2

]) have

sug

geste

d a

set o

f pro

pertie

s th

at risk

measu

res sh

ou

ld

satisfy

, thu

s defin

ing

the co

nce

pt o

f coh

ere

nt m

easu

res o

f risk1:

Defin

ition

1 A

risk measu

re ρ

: L

∞ → R

is coh

ere

nt if it sa

tisfies th

e fo

llow

ing

pro

pertie

s:

Su

bad

ditiv

ity Fo

r all b

ou

nd

ed

ran

dom

varia

ble

s X a

nd

Y , ρ

(X +

Y ) ≤

ρ(X

)+ ρ

(Y )

Mon

oto

nicity

For a

ll bou

nd

ed

ran

dom

varia

ble

s X, Y

such

that X

≤ Y

2 , ρ

(X) ≥

ρ(Y

)

Positiv

e h

om

og

en

eity

For a

ll λ ≥

0 a

nd

bou

nd

ed

ran

dom

varia

ble

X, ρ

(λX

)= λ

ρ(X

)

1On th

e to

pic, se

e a

lso A

rtzner’s [1

], and D

elb

aen

’s [12

] an

d [1

3]

Page 5: Alocaton Of Risk Capital

2The re

latio

n X

≤ Y

betw

een tw

o ra

nd

om

varia

ble

s is take

n to

mean

X(ω

) ≤ Y

(ω) fo

r alm

ost a

ll ω ∈

Ω, in

a p

rob

ability

space

(Ω, F ,P

).

Transla

tion

invaria

nce

For a

ll α ∈

R a

nd

bou

nd

ed

ran

dom

varia

ble

X,

ρ(X

+ α

rf )=

ρ(X

) −α

where

rf is th

e p

rice, a

t som

e p

oin

t in th

e fu

ture

, of a

refe

ren

ce, riskle

ss

investm

en

t whose

price

is 1 to

day.

Th

e p

rop

ertie

s th

at d

efin

e co

here

nt risk

measu

res a

re to

be

un

dersto

od

as n

ece

ssary

con

ditio

ns fo

r a risk

measu

re to

be

reaso

nab

le. Le

t us b

riefly ju

stify th

em

. Su

bad

ditiv

ity re

flects th

e d

iversifi

catio

n o

f portfo

lios, o

r that “a

merg

er d

oes n

ot cre

ate

extra

risk” [3

, p.2

09

]. Mon

oto

nicity

says th

at if a

portfo

lio Y

is a

lways

worth

more

than

X, th

en

Y ca

nn

ot b

e riskie

r than

X.

Hom

og

en

eity

is a

limit ca

se o

f sub

ad

ditiv

ity, re

pre

sen

ting

what h

ap

pen

s w

hen

there

is p

recise

ly n

o d

iversifi

catio

n e

ffect.

Transla

tion

invaria

nce

is a n

atu

ral re

qu

irem

en

t, giv

en

the m

ean

ing

of th

e risk m

easu

re g

iven

ab

ove a

nd

its rela

tion

to th

e n

um

´

era

ire.

In th

is pap

er, w

e w

ill not b

e co

nce

rned

with

specifi

c risk

measu

res, u

ntil o

ur e

xam

ple

of se

ction

7; w

e h

ow

ever a

ssum

e a

ll

risk measu

res to

be co

here

nt.

Cohere

nce

of th

e a

lloca

tion

prin

ciple

An

allo

catio

n p

rincip

le is a

solu

tion

to th

e risk

cap

ital a

lloca

tion

pro

ble

m. W

e su

gg

est in

this se

ction

a se

t of a

xio

ms, w

hich

we

arg

ue

are

nece

ssary

pro

pertie

s of a

“reaso

nab

le” a

lloca

tion

prin

ciple

. We

will ca

ll coh

ere

nt a

n a

lloca

tion

prin

ciple

that sa

tisfies

the se

t of a

xio

ms. T

he fo

llow

ing

defin

ition

s are

use

d:

•X

i, i ∈

1,2

,...,n

, is a b

oun

ded

ran

dom

varia

ble

rep

rese

ntin

g th

e n

et w

orth

at tim

e T

of th

e i th

portfo

lio o

f a fi

rm. W

e a

ssum

e

that th

e n

th p

ortfo

lio

is a riskle

ss instru

men

t with

net w

orth

at tim

e T

eq

ual to

Xn

= α

rf , w

here

rf th

e tim

e T

price

of a

riskless in

strum

en

t with

price

1

Page 6: Alocaton Of Risk Capital

tod

ay.

•X

, the b

ou

nd

ed

ran

dom

varia

ble

rep

rese

ntin

g th

e fi

rm’s n

et w

orth

at so

me

n

poin

t in th

e fu

ture

T, is d

efin

ed

as X

Xi.

i=1

•N

is the se

t of a

ll portfo

lios o

f the fi

rm.

•A

is the se

t of risk ca

pita

l allo

catio

n p

rob

lem

s: pairs (N

,ρ) co

mp

ose

d o

f a se

t of n

portfo

lios a

nd

a co

here

nt risk m

easu

re ρ

.

•K

= ρ

(X) is th

e risk ca

pita

l of th

e fi

rm.

We ca

n n

ow

define:

Defin

ition

2 A

n a

lloca

tion

prin

ciple

is a fu

nctio

n Π

: A R

n th

at m

ap

s

each

allo

catio

n p

rob

lem

(N, ρ

) into

a u

niq

ue a

lloca

tion

:

Π1(N

, ρ) K

1

Π:(N

, ρ)

−→

Π2(N

, ρ)

. .

=

Page 7: Alocaton Of Risk Capital

K2

. .

such

that K

i = ρ

(X).

..

i∈N

Πn(N

, ρ) K

n

Th

e co

nd

ition

en

sure

s th

at th

e risk

cap

ital is

fully

allo

cate

d. T

he

Ki–n

ota

tion

is u

sed

wh

en

the

arg

um

en

ts a

re cle

ar fro

m th

e

con

text.

Defin

ition

3 A

n a

lloca

tion

prin

ciple

Π is

coh

ere

nt if fo

r every

allo

catio

n p

rob

lem

(N, ρ

), the

allo

catio

n Π

(N, ρ

)satisfi

es th

e th

ree

pro

pertie

s:

1) N

o u

nd

ercu

t

∀ M

⊆ N

,

Ki ≤

ρX

i i∈M

i∈M

2) S

ym

metry

If by jo

inin

g a

ny su

bse

t M ⊆

N\

i, j, p

ortfo

lios i a

nd

j both

make

the sa

me co

ntrib

utio

n to

the risk ca

pita

l, then

Ki =

Kj .

3) R

iskless a

lloca

tion

Kn

= ρ

(αrf )=

−α

Reca

ll that th

e n

th p

ortfo

lio is a

riskless in

strum

ent.

Furth

erm

ore

, we ca

ll non

-neg

ativ

e co

here

nt a

lloca

tion

a co

here

nt a

lloca

tion

wh

ich sa

tisfies K

i ≥ 0

, ∀i ∈

N.

It is o

ur p

rop

ositio

n th

at th

e th

ree

axio

ms o

f Definitio

n 3

are

nece

ssary

con

ditio

ns o

f the

fairn

ess, a

nd

thus cre

dib

ility, o

f

Page 8: Alocaton Of Risk Capital

allo

catio

n p

rincip

les. In

that se

nse

, coh

ere

nce

is a y

ard

stick by w

hich

allo

catio

n p

rincip

les ca

n b

e e

valu

ate

d.

Th

e p

rop

ertie

s can

be

justifi

ed

as fo

llow

s. Th

e “n

o u

nd

ercu

t” pro

perty

en

sure

s that n

o p

ortfo

lio ca

n u

nd

ercu

t the

pro

pose

d

allo

catio

n: a

n u

nd

ercu

t occu

rs wh

en

a p

ortfo

lio’s a

lloca

tion

is hig

her th

an

the

am

ou

nt o

f risk ca

pita

l it wou

ld fa

ce a

s an

entity

sep

ara

te fro

m th

e fi

rm. G

iven

sub

ad

ditiv

ity, th

e ra

tion

ale

is simp

le. U

pon

a p

ortfo

lio jo

inin

g th

e fi

rm (o

r any su

bse

t there

of), th

e

tota

l risk ca

pita

l incre

ase

s b

y n

o m

ore

than

the

portfo

lio’s

ow

n risk

cap

ital: in

all fa

irness, th

at p

ortfo

lio ca

nn

ot ju

stifiab

ly b

e

allo

cate

d m

ore

risk ca

pita

l than

it can

possib

ly h

ave

bro

ug

ht to

the

firm

. Th

e p

rop

erty

also

en

sure

s that co

alitio

ns o

f portfo

lios

cann

ot u

nd

ercu

t, with

the

sam

e ra

tion

ale

. Th

e sy

mm

etry

pro

perty

en

sure

s th

at a

portfo

lio’s

allo

catio

n d

ep

en

ds o

nly

on

its

con

tribu

tion

to risk

with

in th

e fi

rm, a

nd

noth

ing

else

. Acco

rdin

g to

the

riskless a

lloca

tion

axio

m, a

riskless p

ortfo

lio sh

ou

ld b

e

allo

cate

d e

xactly

its risk m

easu

re, w

hich

incid

enta

lly w

ill be n

eg

ativ

e. It a

lso m

ean

s that, a

ll oth

er th

ing

s bein

g e

qual, a

portfo

lio

that in

crease

s its cash

positio

n, sh

ould

see its a

lloca

ted

cap

ital d

ecre

ase

by th

e sa

me a

mou

nt.

Gam

e th

eory

an

d a

lloca

tion

to a

tom

ic pla

yers

Gam

e th

eory

is th

e stu

dy

of situ

atio

ns w

here

pla

yers

ad

op

t vario

us stra

teg

ies to

best a

ttain

their in

div

idu

al g

oals. Fo

r now

,

pla

yers w

ill be a

tom

ic, mean

ing

that fra

ction

s of p

layers a

re co

nsid

ere

d se

nse

less. W

e w

ill focu

s here

on co

alitio

nal g

am

es:

Defin

ition

4 A

coalitio

nal g

am

e (N

, c) con

sists of:

%•

a fi

nite

set N

of n

pla

yers, a

nd

%•

a co

st fun

ction

c that a

ssocia

tes a

real n

um

ber c(S

) to e

ach

sub

set S

of N

(calle

d a

coalitio

n).

We d

en

ote

by G

the se

t of g

am

es w

ith n

pla

yers.

Th

e g

oal o

f each

pla

yer is to

min

imize

the co

st she in

curs, a

nd

her stra

teg

ies co

nsist o

f acce

ptin

g o

r not to

take

part in

coalitio

ns

(inclu

din

g th

e co

alitio

n o

f all p

layers).

Page 9: Alocaton Of Risk Capital

In th

e lite

ratu

re, th

e co

st fun

ction

is usu

ally

assu

med

to b

e su

bad

ditiv

e: c(S

∪ T

) ≤ c(S

)+ c(T

) for a

ll sub

sets

S a

nd

T o

f N

with

em

pty

inte

rsectio

n; a

n a

ssum

ptio

n w

hich

we m

ake

as w

ell.

One o

f the m

ain

qu

estio

ns ta

ckled

in co

alitio

nal g

am

es, is th

e a

lloca

tion

of th

e co

st c(N) b

etw

een

all p

layers; th

is qu

estio

n is

form

alize

d b

y th

e co

nce

pt o

f valu

e:

Defin

ition

5 A

valu

e is a

fun

ction Φ

: G R

n th

at m

ap

s each

gam

e (N

, c)

into

a u

niq

ue a

lloca

tion

:

Φ1(N

, c) K1

Φ:(N

, c)

−→

Φ2(N

, c) . . .

=

K2

. . .

Page 10: Alocaton Of Risk Capital

where

Ki =

c(N)

i∈N

Φn(N

, c) Kn

Ag

ain

, the

Ki–n

ota

tion

can

be

use

d w

hen

the

arg

um

en

ts are

clear fro

m th

e co

nte

xt, a

nd

when

it is also

clear w

heth

er w

e m

ean

Πi(N

, ρ)o

rΦi(N

, c).

4.1

The co

re o

f a g

am

e

Giv

en

the

sub

ad

ditiv

ity o

f c, the

pla

yers

of a

gam

e h

ave

an

ince

ntiv

e to

form

the

larg

est co

alitio

n N

, since

this

brin

gs a

n

imp

rovem

en

t of th

e to

tal co

st, wh

en

com

pare

d w

ith th

e su

m o

f their in

div

idu

al co

sts. Th

ey n

eed

on

ly fi

nd

a w

ay to

allo

cate

the

cost c(N

) of th

e fu

ll coalitio

n N

, betw

een

them

selv

es; b

ut in

doin

g so

, pla

yers still try

to m

inim

ize th

eir o

wn

share

of th

e b

urd

en

.

Pla

yer i w

ill even

thre

ate

n to

leave th

e co

alitio

n N

if she is a

lloca

ted

a sh

are

Ki o

f the to

tal co

st

that is h

igh

er th

at h

er o

wn

ind

ivid

ual co

st c( i

). Sim

ilar th

reats m

ay co

me fro

m co

alitio

ns S

⊆ N

:if Ki e

xceed

s c(S) th

en

every

pla

yer i in

S co

uld

i∈S

carry

an

allo

cate

d co

st low

er th

an

his cu

rren

t Ki,if S

sep

ara

ted

from

N.

Th

e se

t of a

lloca

tions th

at d

o n

ot a

llow

such

thre

at fro

m a

ny p

layer n

or co

alitio

n is ca

lled

the co

re:

Defin

ition

6 T

he co

re o

f a co

alitio

nal g

am

e (N

, c) is the se

t of a

lloca

tion

s

K ∈

Rn

for w

hich

i∈S

Ki ≤

c(S) fo

r all co

alitio

ns S

⊆ N

.

A co

nd

ition

for th

e co

re to

be

non-e

mp

ty is

the

Bond

are

va-S

hap

ley

theore

m. Le

t C b

e th

e se

t of a

ll coalitio

ns o

f N, le

t us

den

ote

by 1

S ∈

Rn

the ch

ara

cteristic v

ecto

r of th

e co

alitio

n S

:

(1S

) i = 1

if i ∈ S

0 o

therw

ise

A b

ala

nce

d co

llectio

n o

f weig

hts is a

colle

ction

of |C

that S

∈C

λS

1S

=1

N . A

gam

e is b

ala

nce

d if S

∈C

λS

c(S) ≥

c(N) fo

r all b

ala

nce

d

Page 11: Alocaton Of Risk Capital

colle

ction

s of w

eig

hts. T

hen

:

| nu

mb

ers λ

S in

[0, 1

] such

Th

eore

m 1

(Bon

dare

va-S

hap

ley, [1

1], [2

9]) A

coalitio

nal g

am

e h

as a

non

-em

pty

core

if an

d o

nly

if it is bala

nce

d.

Pro

of: se

e e

.g. [2

1].

4.2

The S

hap

ley v

alu

e

Th

e S

hap

ley v

alu

e w

as in

trod

uce

d b

y L. S

hap

ley [2

8] a

nd

has e

ver sin

ce re

ceiv

ed

a co

nsid

era

ble

am

ou

nt o

f inte

rest (se

e [2

4]).

We u

se th

e a

bb

revia

tion

∆i(S

)= c(S

∪ i) −

c(S) fo

r an

y se

t S ⊂

N, i

S. Tw

o p

layers i a

nd

j are

inte

rchan

geab

le in

(N, c) if e

ither o

ne

make

s the

sam

e co

ntrib

utio

n to

an

y co

alitio

n S

it may jo

in, th

at

con

tain

s neith

er i n

or j:∆

i(S)=

∆j (S

) for e

ach

S ⊂

N a

nd

i, j ∈ S

. A p

layer i is a

du

mm

y if it

brin

gs th

e co

ntrib

utio

n c(i) to

an

y co

alitio

n S

that d

oes n

ot co

nta

in it a

lread

y: ∆i(S

)= c(i). W

e n

eed

to d

efin

e th

e th

ree p

rop

ertie

s:

Sym

metry

If pla

yers i a

nd

j are

inte

rchan

geab

le, th

en

Φ(N

, c) i =Φ

(N, c) j

Du

mm

y p

layer Fo

r a d

um

my p

layer, Φ

(N, c) i =

c(i)

Ad

ditiv

ity o

ver g

am

es Fo

r two g

am

es (N

, c1) a

nd

(N, c

2), Φ(N

, c1

+ c

2)=

Φ(N

, c1)+

Φ(N

, c2), w

here

the g

am

e (N

, c1+

c2) is d

efin

ed

by (c

1+c

2)(S)=

c1(S

)+ c

2(S) fo

r all S

⊆ N

.

Th

e ra

tionale

of th

ese

pro

pertie

s will b

e d

iscusse

d in

the n

ext se

ction

. Th

e a

xio

matic d

efin

ition

of th

e S

hap

ley v

alu

e is th

en

:

Page 12: Alocaton Of Risk Capital

Defin

ition

7 ([2

8]) T

he

Sh

ap

ley v

alu

e is th

e o

nly

valu

e th

at sa

tisfies th

e p

rop

ertie

s of sy

mm

etry, d

um

my

pla

yer, a

nd

ad

ditiv

ity

over g

am

es.

Let u

s now

brin

g to

geth

er th

e co

re a

nd

the S

hap

ley v

alu

e: w

hen

does th

e S

hap

ley v

alu

e y

ield

allo

catio

ns th

at a

re in

the co

re

of th

e g

am

e ?

Th

e o

nly

perta

inin

g re

sults

to o

ur kn

ow

led

ge

are

that o

f Sh

ap

ley

[30

] an

d A

ub

in [5

]. Th

e fo

rmer in

volv

es th

e

pro

perty

of stro

ng

sub

ad

ditiv

ity:

Defin

ition

8 A

coalitio

nal g

am

e is stro

ng

ly su

bad

ditiv

e if it is b

ase

d o

n a

stron

gly

sub

ad

ditiv

e3

cost fu

nctio

n:

c(S)+

c(T) ≥

c(S ∪

T )+

c(S ∩

T )

for a

ll coalitio

ns S

⊆N

and

T ⊆

N.

Th

eore

m 2

([30

]) If a g

am

e (N

, c) is stron

gly

sub

ad

ditiv

e, its co

re co

nta

ins th

e S

hap

ley v

alu

e.

Th

e se

con

d co

nd

ition

that e

nsu

res th

at th

e S

hap

ley v

alu

e is in

the co

re, is:

Th

eore

m 3

([5]) If fo

r all co

alitio

ns S

, | S|≥

2,

(−1

) | S|−

| T | c(T

) ≤ 0

T ⊆

S

then

the co

re co

nta

ins th

e S

hap

ley v

alu

e.

Th

e im

plica

tion

s of th

ese

two re

sults a

re d

iscusse

d in

the n

ext se

ction

.

Let u

s en

d th

is sectio

n w

ith th

e a

lgeb

raic d

efin

ition

of th

e S

hap

ley v

alu

e, w

hich

pro

vid

es b

oth

an

inte

rpre

tatio

n (se

e [2

8] o

r

[24

]), an

d a

n e

xp

licit com

puta

tion

al a

pp

roach

.

Defin

ition

9 T

he S

hap

ley v

alu

e K

Sh

for th

e g

am

e (N

, c) is defi

ned

as:

Page 13: Alocaton Of Risk Capital

KS

h ( s −

1)!(

n

s )!

,i ∈N

=

i

n! c (S

) −c(S

\i

)

S∈

Ci

where

s = S

, and

Ci re

pre

sents a

ll coalitio

ns o

f N th

at co

nta

in i.

||

Note

that th

is req

uire

s the e

valu

atio

n o

f c fo

r each

of th

e 2

n p

ossib

le co

alitio

ns, u

nle

ss the p

rob

lem

has so

me sp

ecifi

c structu

re.

Dep

en

din

g o

n w

hat c is, th

is task m

ay b

eco

me im

possib

ly lo

ng

, even

for m

od

era

te n

.

3By d

efin

ition, a

strong

ly su

bad

ditiv

e se

t functio

n is su

bad

ditiv

e. W

e fo

llow

Shap

ley [3

0] in

ou

r term

inolo

gy; n

ote

that h

e ca

lls con

vex, a

functio

n sa

tisfyin

g

the re

verse

rela

tion

of stro

ng su

bad

ditiv

ity.

4.3

Risk ca

pita

l allo

catio

ns a

nd g

am

es

Cle

arly

, we

inte

nd

to m

od

el risk

cap

ital a

lloca

tion

pro

ble

ms a

s coalitio

nal g

am

es. W

e ca

n a

ssocia

te th

e p

ortfo

lios o

f a fi

rm w

ith

the p

layers o

f a g

am

e, a

nd

the risk m

easu

re ρ

with

the co

st fun

ction c :

c(S)

ρX

i for S

⊆N

(1)

i∈S

Allo

catio

n p

rincip

les n

atu

rally

beco

me v

alu

es.

Note

that g

iven

(1), ρ

bein

g co

here

nt a

nd

thu

s sub

ad

ditiv

e in

the se

nse

ρ(X

+ Y

) ≤ ρ

(X)+

ρ(Y

) of D

efin

ition

1, im

plie

s that c

is sub

ad

ditiv

e in

the se

nse

c(S ∪

T ) ≤

c(S)+

c(T ) g

iven

ab

ove.

Th

e co

re A

lloca

tion

s satisfy

ing

the “n

o u

nd

ercu

t” pro

perty

lie in

the co

re o

f the g

am

e, a

nd

if non

e d

oes, th

e co

re is e

mp

ty. There

Page 14: Alocaton Of Risk Capital

is only

a in

terp

reta

tion

al d

istinctio

n b

etw

een

the tw

o co

nce

pts: w

hile

a “re

al” p

layer ca

n th

reate

n to

leave th

e fu

ll coalitio

n N

, a

portfo

lio ca

nn

ot w

alk a

way fro

m a

bank. H

ow

ever, if th

e a

lloca

tion

is to b

e fa

ir, un

dercu

tting

shou

ld b

e a

void

ed

. Ag

ain

, this h

old

s

also

for co

alitio

ns o

f ind

ivid

ual p

layers/p

ortfo

lios.

Th

e n

on

-em

ptin

ess

of th

e co

re is

there

fore

crucia

l to th

e e

xiste

nce

of co

here

nt a

lloca

tion

prin

ciple

s. From

Theore

m 1

, we

have:

Th

eore

m 4

If a risk

cap

ital a

lloca

tion

pro

ble

m is m

od

elle

d a

s a co

alitio

nal g

am

e w

hose

cost fu

nctio

n c is d

efi

ned

with

a co

here

nt

risk measu

re ρ

thro

ug

h (1

), then its co

re is n

on

-em

pty.

Pro

of: Le

t 0 ≤

λS

≤1

for S

∈C

, and

λS1

S =

1N. T

hen

S

∈C

λS

c(S)=

ρλ

SXi i∈

S

S∈

C S

∈C

λSX

i

≥ ρ

i∈S

S∈

C

= ρ

λS X

i

i∈N

S∈

C,S

i

= c(N

)

By T

heore

m 1

, the

core

of th

e g

am

e is n

on

-em

pty.

Th

e S

hap

ley v

alu

e W

ith th

e a

lloca

tion

pro

ble

m m

od

elle

d a

s a g

am

e, th

e

Sh

ap

ley v

alu

e y

ield

s a risk

cap

ital a

lloca

tion

prin

ciple

. Much

more

, it is a co

here

nt a

lloca

tion

prin

ciple

, bu

t for th

e “n

o u

nd

ercu

t”

axio

m. S

ym

metry

is satisfi

ed

by d

efin

ition

. Th

e riskle

ss allo

catio

n a

xio

m o

f Definitio

n 3

is imp

lied

by th

e d

um

my p

layer a

xio

m:

Page 15: Alocaton Of Risk Capital

from

ou

r defin

ition

s of se

ction 3

, the re

fere

nce

, riskless in

strum

ent (ca

sh a

nd

eq

uiv

ale

nts) is a

du

mm

y p

layer.

Note

that a

dd

itivity

over g

am

es is a

pro

perty

that th

e S

hap

ley v

alu

e p

osse

sses b

ut th

at is n

ot re

qu

ired

of co

here

nt a

lloca

tion

prin

ciple

. As d

iscusse

d in

sectio

n 5

.3.2

, ad

ditiv

ity co

nflicts w

ith th

e co

here

nce

of th

e risk m

easu

res.

Th

e S

hap

ley

valu

e a

s co

here

nt a

lloca

tion

prin

ciple

From

the

ab

ove, th

e S

hap

ley

valu

e p

rovid

es u

s w

ith a

cohere

nt a

lloca

tion

prin

ciple

if it map

s gam

es to

ele

men

ts of th

e co

re. It is th

e ca

se w

hen

the co

nd

ition

s of e

ither T

heore

ms 2

or 3

are

satisfi

ed

. Th

e

case

of T

heore

m 2

is perh

ap

s disa

pp

oin

ting

, as th

e stro

ng

sub

ad

ditiv

ity o

f c imp

lies a

n o

verly

string

en

t con

ditio

n o

n ρ

:

Th

eore

m 5

Let ρ

be

a p

ositiv

ely

hom

og

eneou

s risk

measu

re, su

ch th

at ρ

(0) =

0. Le

t c b

e d

efi

ned

over th

e se

t of su

bse

ts o

f

ran

dom

varia

ble

s in L

∞, thro

ug

h

c(S)

ρ ( i∈

S X

i). Th

en

if c is stron

gly

sub

ad

ditiv

e, ρ

is linear.

Pro

of: C

on

sider a

ny ra

nd

om

varia

ble

s X, Y, Z

in L

∞. Th

e stro

ng

sub

ad

ditiv

ity o

f c imp

lies

ρ(X

+ Z

)+ ρ

(Y +

Z) ≥

ρ(X

+ Y

+ Z

)+ ρ

(Z) b

ut a

lso

ρ(X

+ Z

)+ ρ

(Y +

Z)=

ρ(X

+(Y

+ Z

) − Y

)+ ρ

(Y +

Z)

ρ(X

+(Y

+ Z

)) + ρ

((Y +

Z) −

Y )

= ρ

(X +

Y +

Z)+

ρ(Z

)

so th

at

ρ(X

+ Z

)+ ρ

(Y +

Z)=

ρ(X

+ Y

+ Z

)+ ρ

(Z)

By ta

king

Z =

0, w

e o

bta

in th

e a

dd

itivity

of ρ

. Th

en

, com

bin

ing

Page 16: Alocaton Of Risk Capital

ρ(−

X)=

ρ(X

− X

) − ρ

(X)=

−ρ

(X)

12

with

the p

ositiv

e h

om

og

en

eity

of ρ

, we o

bta

in th

at ρ

is hom

og

eneou

s, an

d th

us lin

ear.

Th

at risks b

e p

lain

ly a

dd

itive is d

ifficu

lt to a

ccep

t, since

it elim

inate

s all p

ossib

ility o

f div

ersifi

catio

n e

ffects.

Un

fortu

nate

ly, th

e co

nd

ition

of T

heore

m 3

is a

lso a

strong

on

e, a

t least in

no

way

imp

lied

by

the

coh

ere

nce

of th

e risk

measu

re ρ

.

We

thu

s fall sh

ort o

f a co

nvin

cing

pro

of o

f the

existe

nce

of co

here

nt a

lloca

tion

s. How

ever, w

e co

nsid

er n

ext a

n o

ther ty

pe

of

coalitio

nal g

am

es, w

here

an

sligh

tly d

iffere

nt d

efin

ition

of co

here

nce

yie

lds m

uch

stron

ger e

xiste

nce

resu

lts.

5 A

lloca

tion

to fra

ction

al p

layers

In th

e p

revio

us se

ction

, portfo

lios w

ere

mod

elle

d a

s pla

yers o

f a g

am

e, e

ach

of th

em

ind

ivisib

le. T

his in

div

isibility

assu

mp

tion

is

not a

natu

ral o

ne, a

s we co

uld

con

sider fra

ction

s of p

ortfo

lios, a

s well a

s coalitio

ns in

volv

ing

fractio

ns o

f portfo

lios. T

he p

urp

ose

of th

is sectio

n is to

exam

ine a

varia

nt o

f the a

lloca

tion g

am

e w

hich

allo

ws d

ivisib

le p

layers.

Th

is tim

e, w

e d

ispen

se w

ith th

e in

itial se

para

tion

of risk-ca

pita

l allo

catio

n p

rob

lem

s a

nd

gam

es, a

nd

intro

duce

the

two

simulta

neou

sly. As b

efo

re, p

layers a

nd

cost fu

nctio

ns a

re u

sed

to m

od

el re

spectiv

ely

portfo

lios a

nd

risk m

easu

res, a

nd

valu

es

giv

e u

s allo

catio

n p

rincip

les.

5.1

Gam

es w

ith fra

ction

al p

layers

Th

e th

eory

of co

alitio

nal g

am

es h

as b

een

exte

nd

ed

to co

ntin

uou

s pla

yers w

ho n

eed

neith

er b

e in

nor o

ut o

f a co

alitio

n, b

ut w

ho

have

a “sca

lab

le” p

rese

nce

. Th

is poin

t of v

iew

seem

s mu

ch le

ss inco

ng

ruou

s if the

pla

yers in

qu

estio

n re

pre

sen

t portfo

lios: a

Page 17: Alocaton Of Risk Capital

coalitio

n co

uld

con

sist of six

ty p

erce

nt o

f portfo

lio A

, an

d fi

fty p

erce

nt o

f portfo

lio B

. Of co

urse

, this m

eans “x

perce

nt o

f each

instru

men

t in th

e p

ortfo

lio”.

Au

man

n a

nd

Sh

ap

ley’s b

ook “V

alu

es o

f Non

-Ato

mic G

am

es” [7

] was th

e se

min

al w

ork o

n th

e g

am

e co

nce

pts d

iscusse

d in

this

sectio

n. T

here

, the

inte

rval [0

, 1] re

pre

sents th

e se

t of a

ll pla

yers, a

nd

coalitio

ns a

re m

easu

rab

le su

bin

terv

als (in

fact, e

lem

en

ts

of a

σ-a

lgeb

ra). A

ny su

bin

terv

al co

nta

ins o

ne o

f smalle

r measu

re, so

that th

ere

are

no

ato

ms, i.e

. smalle

st en

tities th

at co

uld

be

calle

d p

layers; h

en

ce th

e n

am

e “n

on

-ato

mic g

am

es”.

Som

e o

f the n

on

-ato

mic g

am

e th

eory

was la

ter re

cast in

a m

ore

intu

itive se

tting

: an

n-d

imensio

nal v

ecto

r λ ∈

Rn

+ re

pre

sen

ts the “le

vel o

f pre

sen

ce” o

f the e

ach

of n

pla

yers in

a co

alitio

n. T

he o

rigin

al p

ap

ers

on

the to

pic a

re A

ub

in’s

[5] a

nd

[6], B

illera

an

d R

aan

an

’s [10

], Bille

ra a

nd

Heath

’s [9], a

nd

Mirm

an a

nd

Tau

man

’s [18

].

Au

bin

calle

d su

ch g

am

es fu

zzy; w

e ca

ll them

(coalitio

nal) g

am

es w

ith fra

ction

al p

layers:

Defin

ition

10

A co

alitio

nal g

am

e w

ith fra

ctional p

layers (N

, Λ, r) co

nsists o

f

• a

fin

ite se

t N o

f pla

yers, w

ith | N

= n

;

|

1.

• a

positiv

e v

ecto

r Λ ∈

Rn

2.

+, e

ach

com

pon

en

t rep

rese

ntin

g fo

r on

e o

f the n

pla

yers h

is full in

volv

em

ent.

%• a

real-v

alu

ed

cost fu

nctio

n r : R

n R

, r : λr(λ

) such

that r(0

) = 0

.

Page 18: Alocaton Of Risk Capital

Pla

yers a

re p

ortfo

lios; th

e v

ecto

r Λ re

pre

sents, fo

r each

portfo

lio, th

e “size

” of th

e p

ortfo

lio, in

a re

fere

nce

unit. (T

he Λ

could

also

rep

rese

nt th

e b

usin

ess v

olu

mes o

f the b

usin

ess u

nits). T

he ra

tio λ

i then

den

ote

s a p

rese

nce

or a

ctivity

Λi

level, fo

r pla

yer/p

ortfo

lio i, so

that a

vecto

r λ ∈

Rn

+ ca

n b

e u

sed

to re

pre

sen

t

a “co

alitio

n o

f parts o

f pla

yers”. W

e still d

en

ote

by X

i the ra

nd

om

varia

ble

of th

e n

et w

orth

of p

ortfo

lio i a

t a fu

ture

time

T ), a

nd

Xn

keep

s its riskless in

strum

en

t defin

ition

of se

ction

3, w

ith tim

e T

net w

orth

eq

ual to

αrf , w

ith α

som

e co

nsta

nt. T

hen

the

cost

fun

ction

r can b

e id

en

tified

with

a risk m

easu

re ρ

thro

ug

h

λi r(λ

)

ρ Λ

i Xi

i∈N

so th

at r(Λ

) = ρ

(N ). B

y e

xte

nsio

n, w

e a

lso ca

ll r(λ) a

risk measu

re. T

he e

xp

ressio

n X

i is the p

er-u

nit fu

ture

net w

orth

of p

ortfo

lio i.

Λi

Th

e d

efinitio

n o

f coh

ere

nt risk m

easu

re (D

efin

ition

1) is a

dap

ted

as:

Defin

ition

11

A risk m

easu

re r is co

here

nt if it sa

tisfies th

e fo

ur p

rop

ertie

s: Su

bad

ditiv

ity4

For a

ll λ∗

and

λ∗

∗ in

Rn

, r(λ∗

+ λ

∗∗) ≤

r(λ∗)+

r(λ∗

∗) M

on

oto

nicity

For a

ll λ∗

and

λ∗

∗ in

Rn

,

λ∗

λ∗

Λii X

i i

Λi X

i

≤⇒

i∈

Ni∈

N

r(λ∗) ≥

r(λ∗

∗)

where

the le

ft-han

d sid

e in

eq

uality

is ag

ain

un

dersto

od

as in

footn

ote

2. D

eg

ree o

ne h

om

og

en

eity

For a

ll λ ∈

Rn, a

nd

for a

ll

γ ∈

R+,

Page 19: Alocaton Of Risk Capital

r(γλ)=

γr(λ

)

Transla

tion

invaria

nce

For a

ll λ ∈

Rn

,

r(λ)=

r

λ1

λ2

. . .

λn

−1

0

λn

Λn

α

One ca

n ch

eck th

at r is co

here

nt if a

nd

only

if ρ is.

5.2

Coh

ere

nt co

st allo

catio

n to

fractio

nal p

layers

Page 20: Alocaton Of Risk Capital

Th

e p

ortfo

lio size

s g

iven

by

Λ a

llow

us

to tre

at a

lloca

tion

s o

n a

per-u

nit

basis. W

e th

us

intro

du

ce a

vecto

r k

∈ R

n, each

com

ponen

t of w

hich

rep

rese

nts th

e p

er u

nit a

lloca

tion

of risk

cap

ital to

each

portfo

lio. T

he

cap

ital a

lloca

ted

to e

ach

portfo

lio is

ob

tain

ed

by a

simp

le H

ad

am

ard

(i.e. co

mp

on

en

t-wise

) pro

du

ct

Λ .∗

k = K

(2)

Let u

s also

defin

e, in

a m

an

ner e

qu

ivale

nt to

the co

nce

pts o

f sectio

n 4

:

4Note

that u

nder d

eg

ree o

ne h

om

og

en

eity

, sub

add

itivity

is eq

uiv

ale

nt to

convexity

r(αλ

∗ +

(1 −

α)λ

∗∗) ≤

αr(λ

∗)+

(1 −

α)r(λ

∗∗)

Defin

ition

12

A fu

zzy v

alu

e is a

map

pin

g a

ssign

ing

to e

ach

coalitio

nal g

am

e w

ith fra

ction

al p

layers (N

, Λ, r) a

un

iqu

e p

er-u

nit

allo

catio

n v

ecto

r

φ1(N

, Λ,r) k

1

φ :(N

, Λ,r)

−→

φ2(N

, Λ,r)

. . .

=

Page 21: Alocaton Of Risk Capital

k2

. . .

φn(N

, Λ,r) k

n

with

Λtk =

r(Λ)

(3)

Ag

ain

, we u

se th

e k-n

ota

tion

when

the a

rgu

men

ts are

clear fro

m th

e co

nte

xt.

Cle

arly

, a fu

zzy v

alu

e p

rovid

es u

s with

an

allo

catio

n p

rincip

le, if w

e g

en

era

lize th

e la

tter to

the co

nte

xt o

f div

isible

portfo

lios.

We ca

n n

ow

define th

e co

here

nce

of fu

zzy v

alu

es:

Defin

ition

13

Let r b

e a

coh

ere

nt risk m

easu

re. A

fuzzy

valu

e φ

:(N, Λ

,r) −→

k ∈ R

n

is coh

ere

nt if it sa

tisfies th

e p

rop

ertie

s defi

ned

belo

w, a

nd

if k is an

ele

men

t of th

e fu

zzy co

re:

•A

gg

reg

atio

n in

varia

nce

Su

pp

ose

the risk m

easu

res r a

nd

r¯satisfy

r(λ)=

¯

r(Γλ) fo

r som

e m

× n m

atrix

Γ and

all λ

such

that 0

≤ λ

≤ Λ

then

φ(N

, Λ,r)=

Γtφ

(N, ΓΛ

,r¯)(4

)

1.

•C

on

tinu

ity T

he m

ap

pin

g φ

is contin

uou

s over th

e n

orm

ed

vecto

r space

Mn

of co

ntin

uou

sly d

iffere

ntia

ble

fun

ction

s r

: Rn

2.

+ −

→ R

that v

an

ish a

t the o

rigin

.

Page 22: Alocaton Of Risk Capital

%•

Non

-neg

ativ

ity u

nd

er r n

on

-decre

asin

g5

If r is non

-decre

asin

g, in

the se

nse

that r(λ

) ≤ r(λ

∗) w

hen

ever 0

≤ λ

≤ λ

≤ Λ

, then

φ(N

, Λ,r) ≥

0(5

)

5Calle

d m

on

oto

nicity

by so

me a

uth

ors.

• D

um

my p

layer a

lloca

tion

If i is a d

um

my p

layer, in

the se

nse

that

r(λ) −

r(λ∗)=

(λi −

λ∗

i ) ρ(X

i) Λi

when

ever 0

≤ λ

≤ Λ

and

λ∗

= λ

exce

pt in

the i th

com

ponen

t, then

ki =

ρ(X

i) (6)Λ

i

•Fu

zzy co

re T

he a

lloca

tion

φ(N

, Λ,r) b

elo

ng

s to th

e fu

zzy co

re o

f the g

am

e (N

, Λ,r) if fo

r all λ

such

that 0

≤ λ

≤ Λ

,

λtφ

(N, Λ

,r) ≤ r(λ

)(7

)

as w

ell a

s Λtφ

(N, Λ

,r)= r(Λ

).

Th

e p

rop

ertie

s req

uire

d o

f a co

here

nt fu

zzy v

alu

e ca

n b

e ju

stified

esse

ntia

lly in

the sa

me m

ann

er a

s was d

on

e in

Defin

ition

3.

Ag

gre

gatio

n in

varia

nce

is a

kin to

the

sym

metry

pro

perty: e

qu

ivale

nt risks

shou

ld re

ceiv

e e

qu

ivale

nt a

lloca

tion

s. Con

tinu

ity is

desira

ble

to e

nsu

re th

at sim

ilar risk

measu

res y

ield

simila

r allo

catio

ns. N

on-n

eg

ativ

ity u

nd

er n

on-d

ecre

asin

g risk

measu

res is a

natu

ral re

qu

irem

en

t to e

nfo

rce th

at “m

ore

risk” imp

ly “m

ore

allo

catio

n”. Th

e d

um

my

pla

yer p

rop

erty

is the

eq

uiv

ale

nt o

f the

riskless a

lloca

tion

of D

efin

ition

3, a

nd

is nece

ssary

to g

ive “risk

cap

ital” th

e se

nse

we g

ave it in

sectio

n 2

: an

am

ou

nt o

f riskless

instru

men

t nece

ssary

to m

ake

a p

ortfo

lio a

ccep

tab

le, riskw

ise. Fin

ally

, note

that th

e fu

zzy co

re is

a sim

ple

exte

nsio

n o

f the

con

cep

t of co

re: a

lloca

tion

s ob

tain

ed

from

the fu

zzy co

re th

roug

h (2

) allo

w n

o u

nd

ercu

t from

any p

layer, co

alitio

n o

f pla

yers, n

or

Page 23: Alocaton Of Risk Capital

coalitio

n w

ith fra

ction

al p

layers. S

uch

allo

catio

ns a

re fa

ir, in th

e sa

me

sense

that co

re e

lem

en

t were

con

sidere

d fa

ir in se

ction

4.3

. Much

less

is kn

ow

n a

bou

t this

allo

catio

n p

rob

lem

than

is kn

ow

n a

bou

t the

simila

r pro

ble

m d

escrib

ed

in se

ction

4. O

n th

e

oth

er h

an

d, o

ne so

lutio

n co

nce

pt h

as b

een

well in

vestig

ate

d: th

e A

um

an

n-S

hap

ley p

ricing

prin

ciple

.

5.3

The A

um

ann-S

haple

y V

alu

e

Au

man

n a

nd

Sh

ap

ley e

xte

nd

ed

the co

nce

pt o

f Shap

ley v

alu

e to

non

-ato

mic g

am

es, in

their o

rigin

al b

ook [7

]. The re

sult w

as

calle

d th

e A

um

an

n-S

hap

ley v

alu

e, a

nd

was la

ter re

cast in

the co

nte

xt o

f fractio

nal p

layers g

am

es, w

here

it is defin

ed

as:

1

φA

S (N

, Λ,r)=

kA

S =

∂r (γΛ

) dγ (8

)

ii

∂λi fo

r pla

yer i o

f N. T

he p

er-u

nit co

st kA

S is th

us a

n a

vera

ge o

f the m

arg

inal

0

i costs o

f the i th

portfo

lio, a

s the le

vel o

f activ

ity o

r volu

me in

crease

s un

iform

ly fo

r all p

ortfo

lios

from

0 to

Λ. T

he v

alu

e h

as a

simp

ler e

xp

ressio

n, g

iven

ou

r assu

med

coh

ere

nce

of th

e risk m

easu

re r; in

deed

, consid

er th

e re

sult

from

stan

dard

calcu

lus:

Lem

ma 1

If f is a k–h

om

og

en

eous fu

nctio

n, i.e

. f(γx)=

γk f(x

), then

∂f (x)

∂xi

is (k − 1

)-hom

og

eneou

s.

As a

resu

lt, since

r is 1–h

om

og

en

eou

s,

φA

S

Page 24: Alocaton Of Risk Capital

(N, Λ

,r)= k

AS

= ∂r(Λ

) (9)

ii

∂λi a

nd

the p

er-u

nit a

lloca

tion

vecto

r is the g

rad

ient o

f the m

ap

pin

g r e

valu

ate

d a

t the

full p

rese

nce

level Λ

: φ(N

, Λ,r) A

S =

kA

S =

∇r(Λ

) (10

)

We ca

ll this g

rad

ien

t “Au

man

n-S

hap

ley p

er-u

nit a

lloca

tion”, o

r simp

ly “A

u-m

an

n-S

hap

ley p

rices”. T

he a

mou

nt o

f risk cap

ital

allo

cate

d to

each

portfo

lio is th

en g

iven

by th

e co

mp

on

en

ts of th

e v

ecto

r

KA

S =

kA

S .(1

1)

∗ Λ

5.3

.1 A

xio

matic ch

ara

cteriza

tion

s of th

e A

um

an

n-S

hap

ley v

alu

e

As in

the S

hap

ley v

alu

e ca

se, a

chara

cteriza

tion

con

sists of a

set o

f pro

pertie

s, wh

ich u

niq

uely

defin

e th

e A

um

an

n-S

hap

ley

valu

e. M

an

y ch

ara

cteriza

tion

s exist (se

e Ta

um

an

[32

]); we co

nce

ntra

te h

ere

on

that o

f Aub

in [5

] an

d [6

], an

d B

illera

an

d H

eath

[9]. B

oth

chara

cteriza

tions a

re fo

r valu

es o

f gam

es w

ith fra

ction

al p

layers a

s defin

ed

ab

ove; o

nly

their a

ssum

ptio

ns o

n r d

iffer

from

ou

r assu

mp

tion

s: their co

st fun

ctions a

re ta

ken to

van

ish a

t zero

and

to b

e co

ntin

uou

sly d

iffere

ntia

ble

, bu

t are

not a

ssum

ed

coh

ere

nt. A

ub

in a

lso im

plicitly

assu

mes r to

be h

om

og

en

eou

s of d

eg

ree o

ne. Le

t us d

efin

e:

A fu

zzy v

alu

e φ

is linear if fo

r an

y tw

o g

am

es (N

,Λ, r

1) an

d (N

,Λ, r

2) an

d sca

lars

γ1

and

γ2, it is a

dd

itive

an

d 1

-hom

og

en

eou

s in

the risk m

easu

re: φ

(N, Λ

,γ1r

1 +

γ2r

2)= γ

1 φ

(N, Λ

,r1)+

γ2

φ(N

, Λ,r

2)

Th

en

, the fo

llow

ing

pro

pertie

s of a

fuzzy

valu

e a

re su

fficie

nt to

un

iqu

ely

defi

ne th

e A

um

an

n-S

hap

ley v

alu

e (8

):

Au

bin

’s B

illera

& H

eath

’s • lin

earity

• lin

earity

Page 25: Alocaton Of Risk Capital

• a

gg

reg

atio

n

invaria

nce

• a

gg

reg

atio

n in

varia

nce

• co

ntin

uity

• n

on

-neg

ativ

ity u

nd

er r n

on

d

ecre

asin

g

In fa

ct, both

Aubin

, and

Bille

ra a

nd

Heath

pro

ve

that th

e A

um

an

n-S

haple

y v

alu

e sa

tisfies

all fo

ur

pro

pertie

s in th

e ta

ble

above.

So, is th

e A

um

an

n-S

haple

y v

alu

e a

cohere

nt fu

zzy v

alu

e w

hen

r is a co

here

nt risk

measu

re ? N

ote

first

that th

e co

here

nce

of r im

plie

s its hom

ogeneity

, as w

ell a

s r(0) =

0. B

ein

g co

ntin

uously

diff

ere

ntia

ble

is not

auto

matic

how

ever;

let u

s a

ssum

e fo

r n

ow

that

r d

oes

have

contin

uou

s d

eriv

ativ

es. T

he

eventu

al

nond

iffere

ntia

bility

will b

e d

iscusse

d la

ter.

Cle

arly

, two

pro

pertie

s are

missin

g fro

m th

e se

t ab

ove

for φ

to q

ualify

as co

here

nt: th

e d

um

my

pla

yer

pro

perty

and

the

fuzzy

core

pro

perty. T

he

form

er ca

use

s n

o p

roble

m: g

iven

(9), th

e v

ery

meanin

g o

f a

du

mm

y p

layer in

Definitio

n 1

3 im

plie

s:

Lem

ma

2 W

hen

the

allo

catio

n p

roce

ss is base

d o

n a

coh

ere

nt risk

measu

re r, th

e A

um

ann

-Shaple

y p

rices

(9) sa

tisfy th

e d

um

my p

layer p

rop

erty.

Con

cern

ing th

e fu

zzy co

re p

rop

erty

, one v

ery

inte

restin

g re

sult o

f Aub

in is th

e fo

llow

ing:

Theore

m 6

([5]) T

he

fuzzy

core

(7) o

f a fu

zzy g

am

e (N

, r, Λ) w

ith p

ositiv

ely

hom

ogeneou

s r is equal to

the

sub

diff

ere

ntia

l ∂r(Λ) o

f r at Λ

.

As A

ubin

note

d, th

e th

eore

m h

as tw

o v

ery

importa

nt co

nse

quen

ces:

Theore

m 7

([5]) If th

e co

st functio

n r is co

nvex (a

s well a

s positiv

ely

hom

ogeneous), th

en

the fu

zzy co

re is

non-e

mp

ty, convex, a

nd

com

pact.

If furth

erm

ore

r is diff

ere

ntia

ble

at Λ

, then th

e co

re co

nsists o

f a sin

gle

vecto

r, the g

rad

ient ∇

r(Λ).

The d

irect co

nse

qu

ence

of th

is is the A

um

ann-S

hap

ley v

alu

e is in

deed a

cohere

nt fu

zzy v

alu

e, g

iven th

at

Page 26: Alocaton Of Risk Capital

5.3

.3 O

n th

e d

iffere

ntia

bility

req

uire

men

t

Con

cern

ing

the d

iffere

ntia

bility

of th

e risk

measu

res/co

st fun

ction

s, rece

nt re

sults a

re e

nco

ura

gin

g. Ta

sche [3

1] a

nd

Sca

illet [2

6]

giv

e co

nd

ition

s un

der w

hich

a co

here

nt risk

measu

re, th

e e

xp

ecte

d sh

ortfa

ll, is diff

ere

ntia

ble

. Th

e co

nd

ition

s are

rela

tively

mild

,

esp

ecia

lly in

com

pariso

n w

ith th

e te

mera

riou

s assu

mp

tion

s com

mon

in th

e a

rea

of risk

man

ag

em

en

t. Exp

licit first d

eriv

ativ

es

are

pro

vid

ed

, wh

ich h

ave

the

follo

win

g in

terp

reta

tion: th

ey

are

exp

ecta

tion

s o

f the

risk fa

cto

rs, cond

ition

ed

on

the

portfo

lio

valu

e b

ein

g b

elo

w a

certa

in q

uan

tile o

f its d

istribu

tion

. Th

is is

very

inte

restin

g: it sh

ow

s th

at w

hen

Au

man

n-S

hap

ley

valu

e is

use

d w

ith a

shortfa

ll risk measu

re, th

e re

sultin

g (co

here

nt) a

lloca

tion

is ag

ain

of a

shortfa

ll typ

e:

Ki =

E −

Xi | i X

i ≤ q

α

21

w

here

is a q

uantile

of th

e d

istribu

tion

of X

i.

i

Even

when

r is not d

iffere

ntia

ble

, som

eth

ing

can

ofte

n b

e sa

ved

. Ind

eed

, sup

pose

that r is n

ot d

iffere

ntia

ble

at Λ

, bu

t is the

sup

rem

um

of a

set o

f para

mete

rized

fun

ctions th

at a

re th

em

selv

es co

nvex, p

ositiv

ely

hom

og

en

eou

s an

d d

iffere

ntia

ble

at Λ

:

r(λ) =

sup

w(λ

,p) (1

2)

p∈

P

where

P is a

com

pact se

t of p

ara

mete

rs of th

e fu

nctio

ns w

, and

w(λ

,p) is u

pp

er se

mico

ntin

uou

s in p

. Th

en

Au

bin

[5] p

roved

:

Th

e fu

zzy co

re is th

e clo

sed

con

vex h

ull o

f all th

e v

alu

es φ

AS

(N,Λ

,w(Λ

,p)) o

f the fu

nctio

ns w

that a

re “a

ctive” a

t Λ, i.e

. that a

re

eq

ual to

r(Λ).

Th

us, sh

ou

ld (1

2) a

rise, —

wh

ich is n

ot u

nlike

ly, th

ink o

f Lag

ran

gia

n re

laxatio

n w

hen

r is defin

ed

by a

n o

ptim

izatio

n p

rob

lem

—, th

e a

bove re

sult p

rovid

es a

set o

f cohere

nt v

alu

es to

choose

from

.

Page 27: Alocaton Of Risk Capital

5.3

.4 A

ltern

ativ

e p

ath

s to th

e A

um

an

n-S

hap

ley v

alu

e

It is v

ery

inte

restin

g th

at th

e re

cen

t rep

ort o

f Tasch

e [3

1] co

mes fu

nd

am

enta

lly to

the

sam

e re

sult o

bta

ined

in th

is se

ction

,

nam

ely

that g

iven

som

e d

iffere

ntia

bility

con

ditio

ns o

n th

e risk

measu

re ρ

, the

corre

ct way

of a

lloca

ting

risk ca

pita

l is thro

ug

h

the A

um

an

n-S

hap

ley p

rices (9

). Tasch

e’s ju

stifica

tion

of th

is con

tentio

n is h

ow

ever co

mp

lete

ly d

iffere

nt; h

e d

efin

es a

s “suita

ble

”,

cap

ital a

lloca

tion

s su

ch th

at if th

e risk-a

dju

sted

retu

rn o

f a p

ortfo

lio is

“ab

ove

avera

ge”, th

en

, at le

ast lo

cally

, incre

asin

g th

e

share

of th

is portfo

lio im

pro

ves th

e o

vera

ll retu

rn o

f the fi

rm. N

ote

that th

e w

ork o

f Sch

mock a

nd

Stra

um

ann

[27

] poin

ts ag

ain

to

the

sam

e co

nclu

sion

. In th

e a

pp

roach

of [3

1] a

nd

[27

], the

Au

man

n-S

hap

ley p

rices a

re in

fact th

e u

niq

ue

satisfa

ctory

allo

catio

n

prin

ciple

.

Oth

ers im

porta

nt re

sults o

n th

e to

pic

inclu

de

that o

f Artzn

er a

nd

Ostro

y [4

], wh

o, w

orkin

g in

a n

on

-ato

mic

measu

re se

tting

,

pro

vid

e a

ltern

ativ

e ch

ara

cteriza

tion

s o

f diff

ere

ntia

bility

an

d su

bd

iffere

ntia

bility

, with

the

goal o

f esta

blish

ing

the

existe

nce

of

allo

catio

ns th

rou

gh, b

asica

lly, E

ule

r’s theore

m. S

ee a

lso th

e fo

rthco

min

g D

elb

aen

[13

].

On

Eu

ler’s

theore

m6, n

ote

also

that th

e fe

asib

ility (3

) of th

e a

lloca

tion

vecto

r follo

ws

dire

ctly fro

m it, a

nd

that o

ut o

f

con

sidera

tion

for th

is, som

e a

uth

ors h

ave

calle

d th

e a

lloca

tion

prin

ciple

(9) th

e E

ule

r prin

ciple

. See

for e

xam

ple

the

atta

chm

ent

to th

e re

port o

f Patrik, B

ern

eg

ger, a

nd

ueg

g [2

3], w

hich

pro

vid

es so

me p

rop

ertie

s of th

is prin

ciple

.

We

shall e

nd

this se

ction

by

dra

win

g th

e a

tten

tion

of th

e re

ad

er to

the

imp

orta

nce

of th

e co

here

nce

of th

e risk

measu

re ρ

(and

the r d

eriv

ed

from

it) for th

e a

lloca

tion

.

Th

e su

bad

ditiv

ity o

f the

risk m

easu

re: is a

nece

ssary

con

ditio

n fo

r the

existe

nce

of a

n a

lloca

tion

with

no

un

dercu

t, in b

oth

the

ato

mic a

nd

fractio

nal p

layers co

nte

xts.

Th

e h

om

og

en

eity

of th

e risk m

easu

re: e

nsu

res th

e sim

ple

form

(9) o

f the A

um

an

n-S

hap

ley p

rices.

Both

sub

ad

ditiv

ity a

nd

hom

og

en

eity: a

re u

sed

to p

rove

that th

e co

re in

non

-em

pty

(Th

eore

m 4

), in th

e a

tom

ic gam

e se

tting

. In

the

fuzzy

gam

e se

tting

, the

two

pro

pertie

s are

use

d to

show

that th

e A

um

ann

-Sh

ap

ley

valu

e is in

the

fuzzy

core

(un

der

Page 28: Alocaton Of Risk Capital

diff

ere

ntia

bility

). Th

ey a

re a

lso u

sed

in th

e n

on

-neg

ativ

ity p

roof o

f the a

pp

en

dix

.

Th

e riskle

ss pro

perty: is ce

ntra

l to th

e d

efin

ition

of th

e riskle

ss allo

catio

n (d

um

my p

layer) p

rop

erty.

Th

e n

on-n

eg

ativ

ity o

f the a

lloca

tion

Giv

en

our d

efin

ition

of risk

measu

re, a

portfo

lio m

ay w

ell h

ave a

neg

ativ

e risk

measu

re, w

ith th

e in

terp

reta

tion

that th

e p

ortfo

lio

is then sa

fer th

an

deem

ed

nece

ssary.

Sim

ilarly

, there

is no

justifi

catio

n p

er se

to e

nfo

rce th

at th

e risk

cap

ital a

lloca

ted

to a

portfo

lio b

e n

on

-neg

ativ

e; th

at is, th

e

allo

catio

n o

f a n

eg

ativ

e a

mou

nt d

oes n

ot p

ose

a co

nce

ptu

al p

rob

lem

. Un

fortu

nate

ly, in

the a

pp

licatio

n

6Wh

ich sta

tes th

at if F is a

real, n

–varia

ble

s, hom

og

en

eous fu

nctio

n o

f degre

e k, th

en

∂F ( x ) ∂F ( x ) ∂F ( x )

++

xn ∂x

n =

kF (x)

x1 ∂x

1 +

x2 ∂x

2

··· w

e w

ou

ld like

to m

ake

of th

e a

lloca

ted

cap

ital, n

on

-neg

ativ

ity is a

pro

ble

m. If

retu

rn

the a

moun

t is to b

e u

sed

in a

RA

PM

-typ

e q

uotie

nt

allo

cate

d ca

pita

l , n

eg

ativ

ity h

as

a ra

ther n

asty

dra

wb

ack, a

s a

portfo

lio w

ith a

n

allo

cate

d ca

pita

l slightly

belo

w ze

ro e

nd

s up

with

a n

eg

ativ

e risk-a

dju

sted

measu

re o

f larg

e m

ag

nitu

de, w

hose

inte

rpre

tatio

n is

less th

an

ob

vio

us. A

neg

ativ

e a

lloca

tion

is there

fore

not so

mu

ch a

con

cern

with

the a

lloca

tion

itself, th

an

with

the u

se w

e w

ou

ld

like to

make

of it.

A cro

ssed

-fin

gers, a

nd

perh

ap

s m

ost p

rag

matic

ap

pro

ach

, is to

assu

me

that th

e co

here

nt a

lloca

tion

is in

here

ntly

non-

neg

ativ

e. In

fact, o

ne

cou

ld re

aso

nab

ly e

xp

ect n

on

-neg

ativ

e a

lloca

tions to

be

the

norm

in re

al-life

situatio

ns. Fo

r ex

am

ple

,

Page 29: Alocaton Of Risk Capital

pro

vid

ed

no p

ortfo

lio o

f the fi

rm e

ver d

ecre

ase

s the risk m

easu

re w

hen

ad

ded

to a

ny su

bse

t of p

ortfo

lios o

f the fi

rm:

c(S ∪

i

) ≥c(S

) ∀S

⊆N

, ∀i ∈

N \ S

then

the

Shap

ley

valu

e is n

ece

ssarily

non

-neg

ativ

e. T

he

eq

uiv

ale

nt co

nd

ition

for th

e A

um

an

n-S

hap

ley p

rices is th

e p

rop

erty

of

non

-neg

ativ

ity u

nd

er n

on

-decre

asin

g r (e

qu

atio

n (5

)): if the a

nte

ced

en

t alw

ays h

old

s, the p

er-u

nit a

lloca

tion

s are

non

-neg

ativ

e.

An

oth

er a

pp

roach

wou

ld b

e to

en

force

non

-neg

ativ

ity b

y re

qu

iring

more

of th

e risk

measu

re. Fo

r exam

ple

, the

core

an

d th

e

non

-neg

ativ

ity o

f the

Ki’s fo

rm a

set o

f linear in

eq

ualitie

s (an

d o

ne

linear e

qu

ality

), so th

at th

e e

xiste

nce

of a

non-n

eg

ativ

e co

re

solu

tion

is eq

uiv

ale

nt to

the

existe

nce

of a

solu

tion

to a

linear sy

stem

. Sp

ecifi

cally

, a h

yp

erp

lan

e se

para

tion

arg

um

ent p

roves

that su

ch a

solu

tion

will e

xist if th

e fo

llow

ing

cond

ition

on

ρ h

old

s:

+,ρ

Xi m

in λ

iXi (1

3)∀

λ ∈

Rn

i∈N

λ

i≤

ρ i∈

N

i∈N

Th

e p

roof is g

iven

in a

dd

end

um

. Th

e co

nd

ition co

uld

be in

terp

rete

d a

s fol

low

s. First assu

me th

at ρ

i∈N

Xi >

0, w

hich

is reaso

nab

le, if w

e a

re in

deed

to a

lloca

te so

me risk

cap

ital. T

hen

(13

) says th

at th

ere

is no

positiv

e lin

ear co

mb

inatio

n o

f (each

an

d e

very

) portfo

lios, th

at ru

ns n

o risk. In

oth

er w

ord

s, a p

erfe

ctly h

ed

ged

portfo

lio

cann

ot b

e a

ttain

ed

by sim

ply

re-w

eig

htin

g th

e p

ortfo

lios, if a

ll portfo

lios a

re to

have

a p

ositiv

e w

eig

ht. H

ow

ever, u

nle

ss on

e is

willin

g to

imp

ose

such

a co

nd

ition

on

the

risk m

easu

re, th

e fa

ct is that th

e issu

e o

f the

non

-neg

ativ

ity re

main

s un

satisfa

ctorily

reso

lved

for th

e m

om

en

t.

Allo

catio

n w

ith a

n S

EC

-like risk m

easu

re

In th

is sectio

n, w

e p

rovid

e so

me e

xam

ple

s of a

pp

licatio

ns o

f the S

hap

ley a

nd

Au

man

n-S

hap

ley co

nce

pts to

a p

rob

lem

of m

arg

in

(i.e. risk ca

pita

l) allo

catio

n.

Page 30: Alocaton Of Risk Capital

Th

e risk

measu

re w

e u

se is

deriv

ed

from

the

Secu

rities a

nd

Exch

an

ge

Com

missio

n (S

EC

) rule

s fo

r marg

in re

quire

ments

(Reg

ula

tion

T), a

s describ

ed

in th

e N

atio

nal A

ssocia

tion

of S

ecu

rities D

eale

rs (NA

SD

) docu

men

t [19

]. Th

ese

rule

s are

use

d b

y

stock

exch

an

ges to

esta

blish

the m

arg

ins re

qu

ired

of th

eir m

em

bers, a

s gu

ara

nte

e a

gain

st the risk

that th

e m

em

bers’ p

ortfo

lios

involv

e (th

e C

hica

go B

oard

of O

ptio

ns E

xchan

ge

is one

such

exch

an

ge). T

he

rule

s them

selv

es a

re n

ot co

nstru

ctive, in

that th

ey

do n

ot sp

ecify

how

the m

arg

in sh

ould

be co

mp

ute

d; th

is com

pu

tatio

n is le

ft to e

ach

mem

ber o

f the e

xchan

ge, w

ho m

ust fi

nd

the

smalle

st marg

in co

mp

lyin

g w

ith th

e ru

les. R

ud

d a

nd

Sch

roed

er [2

5] p

roved

in 1

98

2 th

at a

linear o

ptim

izatio

n p

rob

lem

(L.P.)

mod

elle

d th

e ru

les a

deq

uate

ly, a

nd

was su

fficie

nt to

esta

blish

the

min

imu

m m

arg

in o

f a p

ortfo

lio, th

at is, to

evalu

ate

its risk

measu

re. It is

worth

men

tion

ing

that g

iven

this

L.P.-base

d risk

measu

re, th

e co

rresp

on

din

g co

alitio

nal g

am

e h

as b

een

calle

d

linear p

rod

uctio

n g

am

e b

y O

wen

[22

], see a

lso [1

0].

For th

e p

urp

ose

of th

e a

rticle, w

e re

strict the

risk m

easu

re to

simp

listic portfo

lios o

f calls o

n th

e sa

me

und

erly

ing

stock, a

nd

with

the sa

me e

xp

iratio

n d

ate

. This re

striction

of th

e S

EC

rule

s is take

n fro

m A

rtzner, D

elb

aen, E

ber a

nd

Heath

[3] w

ho u

se it a

s

an

exam

ple

of a

non

-cohere

nt risk

measu

re. In

the ca

se o

f a p

ortfo

lio o

f calls, th

e m

arg

in is ca

lcula

ted

thro

ug

h a

rep

rese

nta

tion

of th

e ca

lls by

a se

t of sp

read

op

tion

s, each

of w

hich

carry

ing

a fi

xed

marg

in. To

ob

tain

a co

here

nt m

easu

re o

f risk, we

pro

ve

late

r that it is su

fficie

nt to

rep

rese

nt th

e ca

lls by a

set o

f spre

ad

s and

bu

tterfl

y o

ptio

ns. N

ote

that su

ch a

chan

ge to

the m

arg

ins

rule

s was p

rop

ose

d b

y th

e N

AS

D a

nd

very

rece

ntly

acce

pte

d b

y th

e S

EC

, see [2

0].

7.1

Coh

ere

nt, S

EC

-like m

arg

in ca

lcula

tion

We co

nsid

er a

portfo

lio co

nsistin

g o

f CP ca

lls at strike

price

P, w

here

P b

elo

ng

s to a

set o

f strike p

rices P

=

Pm

in,Pm

in +

10

,...,Pm

ax

−1

0,P

max

. Th

is assu

mp

tion

ab

ou

t the fo

rmat o

f the strike

price

s set P

, inclu

din

g th

e in

terv

als o

f 10

, make

s the n

ota

tion

more

pala

tab

le, w

ithou

t loss o

f gen

era

lity. For co

nven

ien

ce, w

e d

en

ote

the se

t P\

Pm

in,Pm

ax

by P

−. W

e a

lso m

ake

the sim

plify

ing

assu

mp

tion

that th

ere

are

as m

an

y lo

ng

calls a

s short ca

lls in th

e p

ortfo

lio, i.e

. C

P =

0. B

oth

assu

mp

tion

s rem

ain

valid

thro

ug

hou

t sectio

n 7

.P ∈

P

We w

ill den

ote

by C

P th

e v

ecto

r of th

e C

P p

ara

mete

rs, P ∈

P. W

hile

CP fu

lly d

escrib

es th

e p

ortfo

lio, it ce

rtain

ly d

oes n

ot

describ

e th

e fu

ture

valu

e o

f the p

ortfo

lio, w

hich

dep

en

ds o

n th

e p

rice o

f the u

nd

erly

ing

stock a

t a fu

ture

date

. Alth

oug

h risk

Page 31: Alocaton Of Risk Capital

measu

res w

ere

defin

ed

as a

map

pin

gs o

n ra

nd

om

varia

ble

s, we n

everth

ele

ss write

ρ(C

P ) sin

ce th

e ρ

con

sidere

d h

ere

can

be

defin

ed

by u

sing

on

ly C

P . O

n th

e o

ther h

an

d, th

ere

is a sim

ple

linear re

latio

nsh

ip b

etw

een C

P a

nd

the fu

ture

worth

s (un

der a

n

ap

pro

pria

te d

iscretiza

tion

of th

e sto

ck price

sp

ace

), so th

at a

n e

xp

ressio

n su

ch a

s ρ C

∗ +

C∗

∗ is a

lso ju

stified

. On

ly in

the

PP

case

of th

e p

rop

erty

“mon

oto

nicity

” need

we tre

at w

ith m

ore

care

the d

istinctio

n b

etw

een

nu

mb

er o

f calls a

nd

futu

re w

orth

.

We ca

n n

ow

define o

ur S

EC

-like m

arg

in re

qu

irem

en

t. To e

valu

ate

the m

arg

in (o

r risk measu

re) ρ

of th

e p

ortfo

lio C

P , w

e fi

rst

rep

licate

its calls w

ith sp

read

s and

bu

tterfl

ies, d

efin

ed

as fo

llow

s:

Varia

ble

Instru

men

t Calls e

qu

ivale

nt

SH

,K

Sp

read

, lon

g in

H, sh

ort in

K

O

ne lo

ng

call a

t price

H

, one

short ca

ll at strike

K

Blo

ng

H

Lon

g b

utte

rfly, ce

nte

red

at

H

One lo

ng

call a

t H−

10

, two

short ca

lls at H

, on

e lo

ng

ca

ll at H

+1

0

Bsh

ort

H

Sh

ort b

utte

rfly, ce

nte

red

at

H

One sh

ort ca

ll at H

−1

0, tw

o

lon

g ca

lls at H

, on

e sh

ort

call a

t H +

1

0

The

varia

ble

s shall re

pre

sent th

e n

um

ber o

f each

specifi

c in

strum

ent. A

ll H a

nd

K a

re u

ndersto

od

to b

e in

P,o

r P−

for th

e b

utte

rflie

s; H =

K fo

r the sp

read

s.

As

in th

e S

EC

rule

s, fixe

d m

arg

ins

are

attrib

ute

d to

the

instru

men

ts u

sed

for th

e re

plica

ting

portfo

lio, i.e

. spre

ad

s a

nd

bu

tterfl

ies in

ou

r case

. Sp

read

s carry

a m

arg

in o

f (H−

K) +

= m

ax(0

,H−

K); sh

ort b

utte

rflie

s are

giv

en

a m

arg

in o

f 10

, wh

ile lo

ng

bu

tterfl

ies re

qu

ire n

o m

arg

in. In

simp

le la

ng

uag

e, e

ach

instru

men

t req

uire

s a

marg

in e

qu

al to

the

worst p

ote

ntia

l loss, o

r

neg

ativ

e p

ayoff

, it cou

ld y

ield

.

Page 32: Alocaton Of Risk Capital

By d

efin

ition

, the m

arg

in o

f a p

ortfo

lio o

f spre

ad

s an

d b

utte

rflie

s is the su

m o

f the m

arg

ins o

f its com

pon

en

ts.

On th

e b

asis o

f [25

], the m

arg

in ρ

(CP ) o

f the p

ortfo

lio ca

n b

e e

valu

ate

d w

ith th

e lin

ear o

ptim

izatio

n p

rob

lem

(SEC

-LP):

min

imize

f tY

subje

ct to

AY =

CP

(SEC

−LP

)

Y

≥ 0

S

where

: Y sta

nd

s for Y

=

Blo

ng

w

here

S is a

colu

mn

vecto

r of a

ll spre

ad

s

Bsh

ort

varia

ble

s co

nsid

ere

d (a

pp

rop

riate

ly o

rdere

d: b

ull sp

read

s, then

bear sp

read

s), an

d B

long

and

Bsh

ort

are

ap

pro

pria

tely

ord

ere

d

colu

mn v

ecto

rs of b

utte

rflie

s varia

ble

s; f tY is sh

orth

and

nota

tion

for

10

Bsh

ort

f tY =

(H −

K) +

SH

,K +

;

H

H,K

∈P

H∈

P−

and

A is

Page 33: Alocaton Of Risk Capital

11 0

···

00

−1

···

0

0 −

1

···

00 0

···

−1

1

1 0

··· ···

0 0 0

1

··· 0

0

0···

0

1

0···

0

−2

1

1

−2

0

1

··· ··· ···

0 0 0

00

Page 34: Alocaton Of Risk Capital

−1

···

0

2 −

1 ···

20

−1

···

0

0 −

1 ···

A =

. .

.

. .

.

. .

.

0 0

··· 0

0 0

··· 1

0 0

···

−1

Page 35: Alocaton Of Risk Capital

. .

. .

. .

. .

. .

. .

. .

. .

. .

0 0

··· 0

0

0

··· 1

0 0

0 0

··· ···

−1

1

0

0

0 0

··· ···

−2 1

. .

.

. .

.

. .

.

0 0

0 0

··· ···

−1 2 0

0···

−1

Th

e o

bje

ctive

fun

ction

rep

rese

nt th

e m

arg

in; th

e e

qu

ality

con

strain

ts en

sure

that th

e p

ortfo

lio is e

xactly

rep

licate

d. T

he

risk

measu

re th

us d

efined

is coh

ere

nt; th

e p

roof is g

iven

next.

Page 36: Alocaton Of Risk Capital

7.2

Pro

of o

f the co

here

nce

of th

e m

easu

re

We p

rove h

ere

that th

e risk

measu

re ρ

ob

tain

ed

thro

ug

h (S

EC

-LP) is co

here

nt, in

the se

nse

of D

efinitio

n 1

. We p

rove e

ach

of th

e

fou

r pro

perty

in tu

rn, b

elo

w.

1) S

ub

ad

ditiv

ity:

and

∗∗C

P

For a

ny tw

o p

ortfo

lios ∗

CP

, ρ

∗∗

+ C

P

Page 37: Alocaton Of Risk Capital

∗C

P

)+( ∗

ρC

P( ∗

ρC

P

) Pro

of:

If solv

ing

(SEC

-LP) w

ith ∗

CP

as rig

ht-h

an

d sid

e o

f the e

qu

ality

Page 38: Alocaton Of Risk Capital

con

strain

ts yie

lds a

solu

tion

, and

solv

ing

with

∗∗

S

CP

yie

lds a

solu

tion

S∗

∗,

∗∗

+ C

P

Page 39: Alocaton Of Risk Capital

then

is a fe

asib

le so

lutio

n fo

r the (S

EC

-LP) w

ith ∗

∗∗

+S

S

CP

as rig

ht-

han

d sid

e. S

ub

ad

ditiv

ity fo

llow

s dire

ctly, g

iven

the lin

earity

of th

e o

bje

ctive fu

nctio

n.

2) D

eg

ree o

ne h

om

og

en

eity: Fo

r an

y γ

≥ 0

an

d a

ny p

ortfo

lio C

P ,

ρ(γ

CP )=

γρ

(CP )

Pro

of: T

his is a

gain

a d

irect co

nse

qu

en

ce o

f the

linear o

ptim

izatio

n n

atu

re o

f ρ,a

s γS

is a so

lutio

n o

f the

(SEC

-LP) w

ith γ

CP

as

righ

t-hand

side

of th

e co

nstra

ints, w

hen

S is a

solu

tion

of th

e (S

EC

-LP) w

ith C

P a

s righ

t-han

d sid

e. O

f cou

rse, th

e v

ery

defin

ition

Page 40: Alocaton Of Risk Capital

of h

om

og

eneity

imp

lies th

at w

e a

llow

fractio

ns o

f calls to

be so

ld a

nd

boug

ht.

3) Tra

nsla

tion

invaria

nce

: 7 A

dd

ing

to a

ny

portfo

lio o

f calls

CP

an

am

oun

t of riskle

ss in

strum

en

t worth

α to

day, d

ecre

ase

s th

e

marg

in o

f CP b

y α

.

Pro

of: T

here

is little to

pro

ve

here

; we

rath

er n

eed

to d

efin

e th

e b

eh

avio

ur o

f ρ in

the

pre

sen

ce o

f a riskle

ss instru

men

t, an

d

natu

rally

choose

the tra

nsla

tion

invaria

nce

pro

perty

to d

o so

. Th

is pro

perty

simp

ly a

nch

ors th

e m

ean

ing

of “m

arg

in”.

4) M

onoto

nicity:

and

∗∗C

P

For a

ny tw

o p

ortfo

lios ∗

CP

such

that th

e fu

ture

Page 41: Alocaton Of Risk Capital

worth

of ∗

CP

is alw

ays le

ss than

or e

qu

al to

that o

f ∗∗C

P

,

) ( ∗∗

ρC

P

( ∗ρ

CP

)

7Note

that in

the in

tere

st of a

tidie

r nota

tion, w

e d

eparte

d fro

m o

ur p

revio

us u

sag

e a

nd

did

not u

se th

e la

st com

pon

en

t of C

P to

den

ote

the riskle

ss instru

ment

Page 42: Alocaton Of Risk Capital

Befo

re p

rovin

g m

on

oto

nicity

, let u

s first in

trod

uce

the

valu

es V

P , fo

r P ∈

P

min

+1

0,...,P

max,P

max

+1

0

, which

rep

rese

nt th

e

futu

re p

ayoff

s, or w

orth

s, of th

e p

ortfo

lio fo

r the fu

ture

price

s P o

f the u

nd

erly

ing

. (Ob

vio

usly

, the la

tter se

t of p

rices m

ay b

e to

o

coarse

a re

pre

senta

tion

of p

ossib

le fu

ture

price

s, and

is use

d to

keep

the n

ota

tion

com

pact; sta

rting

with

a fi

ner P

wou

ld re

lieve

this

pro

ble

m) A

gain

, we

write

VP

to d

en

ote

the

vecto

r of a

ll VP

’s. Th

e co

mp

on

ents

of V

P a

re co

mp

lete

ly d

ete

rmin

ed

by

the

nu

mb

er o

f calls in

the p

ortfo

lio:

P −

10V

P =

Cp(P

−p

) ∀P ∈

P

min

+1

0,...,P

max,P

max +

10

p

=P

min

which

is alte

rnativ

ely

writte

n V

P

MC

P , w

ith th

e sq

uare

, invertib

le m

atrix

M:

M =

10

0 0

···

20

10

0

···

30

20

10

···

. . ..

....

... .

Page 43: Alocaton Of Risk Capital

Th

e a

nte

ced

en

t of th

e m

on

oto

nicity

pro

perty

is, of co

urse

, the co

mp

on

en

twise

V ∗

≤ V

∗∗.

PP W

e w

ill also

use

the fo

llow

ing

lem

ma:

Lem

ma 3

Un

der su

bad

ditiv

ity, two e

qu

ivale

nt fo

rmu

latio

ns o

f mon

oto

nicity

are

, for a

ny th

ree p

ortfo

lios C

P , C

∗ a

nd

C∗

∗:

PP

V ∗

≤ V

∗∗

= ⇒

ρ(M

−1V

P ∗

) ≥ ρ

(M−

1V ∗

∗)

PP P

and

0 ≤

VP

= ⇒ ρ

(M−

1VP ) ≤

0

Pro

of: T

he u

pp

er co

nd

ition

is suffi

cien

t, as it im

plie

s

ρ(0

) ≥ ρ

(M−

1VP ),

and

ρ(0

) = 0

from

the v

ery

structu

re o

f (SE

C-LP

). Th

e u

pp

er co

nd

ition

is nece

ssary

, as

ρ(M

−1V

∗∗

P

)= M

−1(V

P ∗

+(V

∗∗

−V

P ∗

)

ρ P

Page 44: Alocaton Of Risk Capital

ρ(M

−1V

P ∗

)+ ρ

M−

1(V ∗

P

−V

P ∗

)

≤ ρ

(M−

1VP ∗

). 29

Pro

of o

f mon

oto

nicity

: As a

con

seq

uen

ce o

f the

ab

ove

lem

ma, it is su

fficie

nt to

pro

ve

that if a

portfo

lio o

f calls

alw

ays h

as

non

-neg

ativ

e fu

ture

payoff

, then its a

ssocia

ted

marg

in is n

on

-positiv

e.

A lo

ok

at (S

EC

-LP) sh

ow

s that th

e m

arg

in a

ssigned

to th

e p

ortfo

lio w

ill be

non

-positiv

e (in

fact, ze

ro), if a

nd

on

ly if a

non

-

neg

ativ

e, fe

asib

le so

lutio

n o

f (SEC

-LP) e

xists in

wh

ich a

ll spre

ad

s varia

ble

s SH

,K w

ith H

>K

and

all sh

ort b

utte

rflie

s varia

ble

s Bsh

ort

have v

alu

e ze

ro. T

his m

ean

s that th

ere

exists a

solu

tion

to th

e lin

ear sy

stem

:

AY

= C

P 0

(1

4)

Y

(15

)

where

Ais m

ad

e o

f the fi

rst an

d th

ird p

arts o

f the A

that w

as d

efined

for (S

EC

-LP):

Page 45: Alocaton Of Risk Capital

A =

11 0

10

0

··· ···

00 −

21 0

−1

··· ···

0 −

1 0

1 −

20

··· ···

00 0

01

0

··· ···

.. ... .

.. ... .

.. ... . 00

00

0 1

··· ···

00 1

00

−2

··· ···

00 −

100

1

··· ···

,

and

Y is th

e a

pp

rop

riate

vecto

r of sp

read

s and

bu

tterfl

ies v

aria

ble

s. We o

bta

in a

new

, eq

uiv

ale

nt sy

stem

of e

qu

atio

ns M

Page 46: Alocaton Of Risk Capital

AY =

MC

P =

VP b

y p

re-m

ultip

lyin

g b

y th

e in

vertib

le m

atrix

Min

trod

uce

d a

bove. R

eca

ll now

that

we h

ave m

ad

e th

e a

ssum

ptio

n th

at th

e p

ortfo

lio co

nta

ins a

s man

y sh

ort ca

lls as lo

ng

calls,

i.e. C

P =

0. T

hu

s, we n

eed

on

ly p

rove th

at th

ere

exists a

non

-neg

ativ

e

P ∈

P

solu

tion

to th

e sy

stem

M

AY =

VP w

hen

ever V

P ≥

0 a

nd

e tM

−1V

P =

0 (e

is a ro

w v

ecto

r of 1

’s). A sim

ple

ob

serv

atio

n o

f M

t Ash

ow

s that its co

lum

ns sp

an

the sa

me su

bsp

ace

as th

e se

t of co

lum

ns

10 0

0

0

0 . . . 0

0

,

1

0 . .

Page 47: Alocaton Of Risk Capital

. 0

0

, ··· ,

0

0 . . . 1

0

,

0

0 . . . 0

1

00 0

1

30

O

bse

rvin

g fu

rtherm

ore

that

t

0 0

.

. . 0

Page 48: Alocaton Of Risk Capital

−1

1

e tM

−1

=

so th

at a

ny V

P sa

tisfyin

g e

tM−

1VP =

0 h

as id

en

tical la

st two co

mp

on

en

ts, the rig

ht-h

an

d sid

e o

f M

A Y

= V

P ca

n a

lways b

e e

xp

resse

d a

s a n

on

-neg

ativ

e lin

ear co

mb

inatio

n o

f the co

lum

ns o

f M

A.

7.3

Com

puta

tion o

f the a

lloca

tions

Giv

en

this

risk m

easu

re a

s a

linear o

ptim

izatio

n p

rob

lem

, the

Sh

ap

ley

valu

e is

easy

to co

mp

ute

wh

en

the

“tota

l portfo

lio” is

div

ided

in a

small n

um

ber o

f sub

portfo

lios. First, th

e m

arg

in o

f every

possib

le co

alitio

n o

f sub

portfo

lios is ca

lcula

ted

. Th

en

, the

marg

in a

lloca

ted

to e

ach

sub

portfo

lio is co

mp

ute

d, u

sing

the fo

rmu

la o

f the S

hap

ley v

alu

e g

iven

in D

efin

ition

9.

Th

e co

mp

uta

tion

of th

e A

um

an

n-S

hap

ley v

alu

e is e

ven

simp

ler. N

ote

that b

y w

orkin

g in

the fra

ction

al p

layers fra

mew

ork, w

e

imp

licitly a

ssum

e th

at fra

ction

s of p

ortfo

lios a

re se

nsib

le in

strum

ents. W

e ch

oose

the

vecto

r of fu

ll pre

sen

ce o

f all p

layers Λ

to

be th

e v

ecto

r of o

nes e

. Reca

ll that th

e A

um

an

n-S

hap

ley p

er u

nit m

arg

in a

lloca

ted

to th

e i th

sub

portfo

lio is

∂r ( e )

kA

S =

(16

)

i

∂λi

where

r(λ) is th

e m

arg

in re

qu

ired

of th

e su

m o

f all th

e su

bp

ortfo

lios i, e

ach

scale

d b

y a

scala

r λi, so

that r(e

)= ρ

(CP

). In v

ecto

r

Page 49: Alocaton Of Risk Capital

nota

tion, k

AS

= ∇

r(e).

Let u

s first d

efin

e th

e lin

ear o

pera

tor L w

hich

map

s the le

vel o

f pre

sen

ce o

f the su

bp

ortfo

lios to

nu

mb

ers o

f calls in

the g

lob

al

portfo

lio. If th

ere

are

|P

| d

iffere

nt ca

lls (e

qu

ivale

ntly

here

, |P

strike p

rices), a

nd

n

sub

portfo

lios, th

en

| L is an

|P

× n m

atrix

, such

that Le

= C

P . E

xam

ple

s are

the th

ree-b

y-five

| m

atrice

s at th

e to

p o

f the ta

ble

s giv

en

in se

ction 7

.4.

Now

, the o

ptim

al d

ual so

lutio

n δ

∗ o

f the

linear p

rog

ram

(SEC

-LP), o

bta

ined

auto

matica

lly w

hen

com

putin

g th

e m

arg

in o

f the

tota

l portfo

lio, p

rovid

es th

e ra

tes o

f

chan

ge o

f the m

arg

in, w

hen

the p

rese

nce

of e

ach

specifi

c call v

arie

s. How

ever, u

sing

the co

mp

lem

enta

rity co

nd

ition

satisfi

ed

at

the o

ptim

al so

lutio

n p

air (Y

∗,δ

∗), w

e ca

n w

rite

f tY ∗

= −

(δ∗) tC

P (1

7)

=(−

(δ∗) tL)e

(18

)

so th

at th

e co

mp

on

en

ts of L

tδ∗

giv

e th

e m

arg

inal ra

tes o

f chan

ge o

f the o

bje

ctive v

alu

e o

f (SE

C-LP

), as a

fun

ction

of su

bp

ortfo

lio

pre

sen

ce, e

valu

ate

d a

t the p

oin

t of fu

ll pre

sen

ce o

f all su

bp

ortfo

lios.

Pu

t in o

ne se

nte

nce

, the m

ost in

tere

sting

resu

lt of th

is sectio

n is th

at th

e A

um

an

n-S

hap

ley a

lloca

tion

is on

ly a

matrix

pro

du

ct

aw

ay fro

m th

e lo

ne e

valu

atio

n o

f the m

arg

in fo

r the to

tal p

ortfo

lio.

Finally

, con

cern

ing

the

un

iqu

en

ess o

f the

allo

catio

n a

nd

the

diff

ere

ntia

bility

of th

e risk

measu

re, w

e ca

n o

nly

say

that th

ey

dep

en

d d

irectly

on

the

un

iqu

en

ess o

f the

op

timal so

lutio

n o

f the

du

al p

rob

lem

of (S

EC

-LP). A

lthou

gh

there

is not sp

ecia

l reaso

n

for m

ultip

le o

ptim

al d

ual so

lutio

ns to

occu

r here

, it can

well h

ap

pen

, in w

hich

case

we

have

ob

tain

ed

on

e o

f man

y a

ccep

tab

le

allo

catio

ns, p

er se

ction

5.3

.3.

Page 50: Alocaton Of Risk Capital

7.4

Num

erica

l exam

ple

s of co

here

nt a

lloca

tion

We ca

n o

bta

in a

som

ew

hat m

ore

pra

ctical fe

elin

g o

f Sh

ap

ley a

nd

Aum

an

n-S

hap

ley a

lloca

tion

s by lo

okin

g a

t exam

ple

s.

For a

ll allo

catio

n e

xam

ple

s belo

w, th

e re

fere

nce

“tota

l” portfo

lio is th

e sa

me; its v

alu

es o

f CP ,P

10

,20

,30

,40

,50

are

:

C1

0 C

20

C3

0 C

40

C5

0

Tota

l

−1

−2

8 −

72

mean

ing

on

e sh

ort ca

ll at strike

10

, two sh

ort ca

lls at strike

20

, eig

ht lo

ng

calls a

t strike 3

0, e

tc. It carrie

s a m

arg

in o

f 40

: ρ(C

P )

= 4

0.

In e

ach

of th

e ta

ble

s belo

w, w

e g

ive

the

div

ision

of th

e to

tal p

ortfo

lio in

thre

e su

bp

ortfo

lios su

ch th

at C

P1

+ C

P2

+ C

P3

= C

P ,

follo

wed

by th

e S

hap

ley a

lloca

tion

an

d th

e A

um

an

n-S

hap

ley a

lloca

tion

. Th

e ta

ble

s are

follo

wed

by so

me

ob

serv

atio

ns. C

on

sider fi

rst the d

ivisio

n:

C10

C20

C30

C40

C50

Sh

ap

ley

Au

man

n −

S

hap

ley

CP

1

−1

0

6

−6

1

15

2

0

CP

2

0

−2

2

0

0

20

2

0

CP

3

0

0

0

−1

1

5

0

Total

−1

−2

8

−7

2

40

4

0

In th

is exam

ple

, coalitio

ns o

f subportfo

lios in

cur m

arg

ins a

s follo

ws: ρ

(CP

1 +

CP

2 )=

40

ρ(C

P1

+ C

P3

)= 2

0 ρ

(CP

2

+ C

P3

)= 3

0 ρ

(CP

1 )=

20

ρ(C

P2

)= 2

0 ρ

(CP

3 )=

10

Con

sider a

seco

nd

exam

ple

:

C10

C20

C30

C40

C50

Sh

ap

ley

Au

man

n −

S

hap

ley

Page 51: Alocaton Of Risk Capital

CP

1

−1

0

2

−2

1

20

2

0

CP

2

0

−1

6

−5

0

0

10

CP

3

0

−1

0

0

1

20

1

0

Total

−1

−2

8

−7

2

40

4

0

Here

, coalitio

ns o

f subp

ortfo

lios p

ortfo

lios in

cur th

e m

arg

ins:

ρ(C

P1

+

CP

2 )=

30

ρ

(CP

1 +

CP

3 )=

50

ρ(C

P2

+ C

P3

)= 2

0

ρ(C

P1

)= 2

0

ρ(C

P2

)= 1

0

ρ(C

P3

)= 3

0

Finally

, the th

ird e

xam

ple

is:

C10

C20

C30

C40

C50

Sh

ap

ley

Au

man

n −

S

hap

ley

CP

1

−1

−1

4

−2

0

26

.66

3

0

CP

2

0

−1

4

−3

0

6.6

6

10

CP

3

0

0

0

−2

2

6.6

6

0

Total

−1

−2

8

−7

2

40

4

0

wh

ere

the co

alitio

ns o

f subp

ortfo

lios in

cur:

ρ(C

P1

+ C

P2

)= 4

0 ρ

(CP

1 +

CP

3 )=

30

ρ(C

P2

+ C

P3

)= 1

0 ρ

(CP

1 )=

30

ρ(C

P2

)= 1

0 ρ

(CP

3 )=

20

On th

ese

exam

ple

s, we n

ote

that:

%•

Th

e S

hap

ley a

nd

Au

man

n-S

hap

ley a

lloca

tion

s do n

ot a

gre

e. A

n e

qu

al a

lloca

tion

in th

is settin

g w

ou

ld h

ave b

een

fortu

itous.

%•

Nu

ll allo

catio

ns d

o o

ccur. N

ull (o

r neg

ativ

e) a

lloca

tion

s can

not b

e ru

led

ou

t, and

do h

ap

pen

here

, both

for th

e

Page 52: Alocaton Of Risk Capital

Conclu

sion

In th

is article

, we

have

discu

ssed

the

allo

catio

n o

f risk ca

pita

l from

an

axio

matic

persp

ectiv

e, d

efinin

g in

the

pro

cess w

hat w

e

call co

here

nt a

lloca

tion

prin

ciple

s.

Our o

rigin

al g

oal is

to e

stab

lish a

fram

ew

ork

with

in w

hich

fin

an

cial risk

allo

catio

n p

rincip

les

cou

ld b

e co

mp

are

d a

s

mean

ing

fully

as p

ossib

le. O

ur sta

nd

is th

at th

is ca

n b

e a

chie

ved

by

bin

din

g th

e co

nce

pt o

f coh

ere

nt risk

measu

res

to th

e

existin

g g

am

e th

eory

resu

lts on

allo

catio

n.

We

sug

gest tw

o se

ts o

f axio

ms, e

ach

definin

g th

e co

here

nce

of risk

cap

ital a

lloca

tion

in a

specifi

c se

tting

: eith

er th

e

con

stituen

ts o

f the

firm

are

con

sidere

d in

div

isible

en

tities

(in th

e co

alitio

nal g

am

e se

tting

), or, to

the

con

trary

, they

are

con

sidere

d to

be d

ivisib

le (in

the co

nte

xt o

f gam

es w

ith fra

ctional p

layers). In

the fo

rmer ca

se, w

e fi

nd

that th

e S

hap

ley v

alu

e is

a co

here

nt a

lloca

tion p

rincip

le, th

ou

gh

only

und

er ra

ther re

strictive co

nd

ition

s on th

e risk m

easu

re u

sed

.

In th

e fra

ctional p

layers

settin

g, th

e A

um

an

n-S

hap

ley

valu

e is

a co

here

nt a

lloca

tion

prin

ciple

, un

der a

mu

ch la

xer

diff

ere

ntia

bility

con

ditio

n o

n th

e risk

measu

re; u

nd

er lin

earity

, it is a

lso th

e u

niq

ue

coh

ere

nt p

rincip

le. In

fact, g

iven

that th

e

allo

catio

n p

roce

ss starts w

ith a

coh

ere

nt risk

measu

re, th

is coh

ere

nt a

lloca

tion

simp

ly co

rresp

on

ds to

the

gra

die

nt o

f the

risk

measu

re w

ith re

spect to

the

pre

sen

ce le

vel o

f the

con

stituents o

f the

firm

. As a

con

seq

uen

ce, th

e A

um

an

n-S

hap

ley

ap

pro

ach

,

beyon

d its th

eore

tical so

un

dn

ess, fu

rther h

as a

com

pu

tatio

nal fe

, in th

at it is a

s easy

to e

valu

ate

, as th

e risk itse

lf is.

Refe

rence

s

[1] P

h. A

rtzner, “A

pp

licatio

n o

f Coh

ere

nt R

isk M

easu

res to

Cap

ital R

eq

uire

men

ts in In

sura

nce

”, North

Am

erica

n A

ctuaria

l Jou

rnal

(19

99

)

[2] P

h. A

rtzner, F. D

elb

aen

, J.-M. E

ber, D

. Heath

, “Th

inkin

g co

here

ntly

”, RIS

K, v

ol. 1

0, n

o. 1

1 (1

99

7).

Page 53: Alocaton Of Risk Capital

[3] P

h. A

rtzner, F. D

elb

aen

, J.-M. E

ber, D

. Heath

, “Cohere

nt m

easu

res o

f risk”, Math

em

atica

l Finan

ce, v

ol. 9

, no. 3

(19

99

), 20

3–

22

8.

[4] P

h. A

rtzner, J. M

. Ostro

y, “G

rad

ien

ts, Su

bg

rad

ien

ts a

nd

Eco

nom

ic E

qu

ilibria

”, Ad

van

ces in

Ap

plie

d M

ath

em

atics, v

ol. 4

(19

83

), 24

5–2

59

.

[5] J.-P. A

ub

in, “M

ath

em

atica

l Meth

od

s of G

am

e a

nd

Eco

nom

ic Th

eory

” (19

79

), North

-Holla

nd

Pu

blish

ing

Co., A

mste

rdam

.

[6] J.-P. A

ub

in, “C

oop

era

tive fu

zzy g

am

es”, M

ath

em

atics o

f Op

era

tion

s Rese

arch

, vol. 6

, no. 1

(19

81

), 1–1

3.

[7] R

. Au

man

n, L. S

hap

ley, “V

alu

es o

f Non

-Ato

mic G

am

es” (1

97

4), P

rince

ton

Univ

ersity

Pre

ss, Prin

ceto

n, N

ew

Jerse

y.

[8] L. J. B

illera

, D. C

. Heath

, J. Raan

an

, “Inte

rnal Te

lep

hon

e B

illing

Rate

s—A

Novel A

pp

licatio

n o

f Non

-Ato

mic

Gam

e T

heory

”,

Op

era

tions R

ese

arch

vol. 2

6, n

o. 6

(19

78

), 95

6–9

65

.

[9]

L. J. Bille

ra, D

. C. H

eath

, “Allo

catio

n o

f share

d co

sts: a se

t of a

xio

ms

yie

ldin

g a

un

iqu

e p

roce

dure

”, M

ath

em

atics

of

Op

era

tions R

ese

arch

vol. 7

, no. 1

(19

82

) 32

–39

.

[10

] L. J. Bille

ra, J. R

aan

an

, “Core

s o

f non

ato

mic

linear p

rod

uctio

n g

am

es”, M

ath

em

atics

of O

pera

tion

s R

ese

arch

vol. 6

, no. 3

(19

81

) 42

0–4

23

.

[11

] O

.N. B

on

dare

va, “S

om

e a

pp

licatio

ns

of th

e m

eth

od

s o

f linear p

rog

ram

min

g to

the

theory

of co

op

era

tive

gam

es”

(in

Ru

ssian

), Pro

ble

my K

ibern

etiki, n

o. 1

0 (1

96

3), 1

19

–13

9.

[12

] F. Delb

aen

, “Cohere

nt risk m

easu

res o

n g

en

era

l pro

bab

ility sp

ace

s´´, rese

arch

pap

er, D

ep

artm

en

t of m

ath

em

atics, E

TH

-Z¨

urich

, 19

98

.

[13

] F. Delb

aen

, forth

com

ing

note

s of th

e tu

toria

l at th

e S

cuola

Norm

ale

Su

perio

re, Pisa

, 20

00

.

[14

] C. G

ou

ri´ero

ux, J.-P. La

ure

nt, O

. Sca

illet, “S

en

sitivity

an

aly

sis o

f valu

es a

t risk” (19

99

), forth

com

ing

in Jo

urn

al o

f Em

pirica

l

Page 54: Alocaton Of Risk Capital

Finan

ce, S

pecia

l Issue o

n R

isk Man

ag

em

ent.

[15

] R.D

. Lucce

, H. R

aiff

a, “G

am

es a

nd

Decisio

ns”, Jo

hn

Wile

y a

nd

Son

s, 19

57

.

[16

] P. M

arco

tte “In

´eq

uatio

ns

varia

tion

nelle

s: Motiv

atio

n, a

lgorith

mes

de

r´eso

lutio

n e

t quelq

ues

ap

plica

tion

s”, Cen

tre d

e

Rech

erch

e su

r les Tra

nsp

orts, P

ub

licatio

n C

RT-9

7-0

2, (1

99

7).

[17

] P. Marco

tte, G

. Savard

, En

try “B

ilevel p

rog

ram

min

g” in

“Th

e E

ncy

clop

ed

ia o

f Op

timiza

tion”, Flo

ud

as a

nd

Pard

alo

s, ed

s. To

ap

pear.

[18

] L. J. Mirm

an, Y. Ta

um

an

, “Dem

an

d co

mp

atib

le e

qu

itab

le co

st sharin

g p

rices”, M

ath

em

atics o

f Op

era

tion

s Rese

arch

vol. 7

, no.

1 (1

98

2) 4

0–5

6.

[19

] Natio

nal A

ssocia

tion

of S

ecu

rities D

eale

rs, “Rep

rint o

f the M

an

ual”, Ju

ly 1

99

6, C

.C.R

., Ch

icag

o.

[20

] Natio

nal A

ssocia

tion

of S

ecu

rities D

eale

rs, “Notice

to m

em

bers” N

o. 0

1-1

1, N

ovem

ber 2

00

0. A

vaila

ble

at w

ww

.nasd

r.com

.

[21

] M. O

sborn

e, A

. Ru

bin

stein

, “A co

urse

in g

am

e th

eory

” (19

94

), MIT

Pre

ss, Massa

chu

setts.

[22

] G. O

wen

, “On

the co

re o

f linear p

rod

uctio

n g

am

es”, M

ath

em

atics o

f Op

era

tion

s Rese

arch

vol. 9

, (19

75

) 35

8–3

70

.

[23

] G.S

. Patrik, S

. Bern

eg

ger, M

. B. R

¨ ueg

g, “T

he

Use

of R

isk A

dju

sted

Cap

ital to

Su

pp

ort B

usin

ess

Decisio

n-M

akin

g”, in

the

“Casu

alty

Actu

aria

l Socie

ty Fo

rum

, Sp

ring

19

99

Ed

ition”, p

p. 2

43

-33

4.

[24

] A. R

oth

, ed

itor, “T

he S

hap

ley v

alu

e. E

ssays in

hon

or o

f Lloyd

S. S

hap

ley” (1

98

8), C

am

brid

ge U

niv

ersity

Pre

ss, Cam

brid

ge.

[25

] A. R

ud

d, M

. Sch

roed

er, “T

he ca

lcula

tion

of m

inim

um

marg

in”, Man

ag

em

en

t Scie

nce

, 28

–12

, 19

82

.

[26

] O. S

caille

t, “Non

para

metric e

stimatio

n a

nd

sen

sitivity

analy

sis of e

xp

ecte

d sh

ortfa

ll”, availa

ble

at:

ww

w.e

con

.ucl.a

c.be/IR

ES

/CS

SS

P/h

om

e p

a p

ers/sca

illet/sca

ill.htm

[27

] U. S

chm

ock, D

. Stra

um

ann

, priv

ate

com

mun

icatio

n.

Page 55: Alocaton Of Risk Capital

[28

] L. Shap

ley, “A

valu

e fo

r n-p

erso

n g

am

es”, C

on

tribu

tion

s to th

e th

eory

of g

am

es, v

olu

me

II (An

nals o

f math

em

atics stu

die

s,

28

, Tucke

r an

d Lu

ce, e

ds.) (1

95

3), P

rince

ton

Un

iversity

Pre

ss, Prin

ceto

n, N

ew

Jerse

y

[29

] L. Shap

ley, “O

n b

ala

nce

d se

ts an

d co

res”, N

aval R

ese

arch

Log

istics Qu

arte

rly 1

4, (1

96

7), p

p. 4

53

–46

0.

[30

] L. Shap

ley, “C

ore

s of co

nvex g

am

es”, In

tern

atio

nal Jo

urn

al o

f Gam

e T

heory

vol. 1

, issue 1

(19

71

-19

72

), pp

. 11

–26

.

[31

] D. Ta

sche, “R

isk con

tribu

tion

s an

d p

erfo

rman

ce m

easu

rem

ent”, R

ep

ort o

f the Le

hrstu

hl f¨u

nch

en

, 19

99

. Availa

ble

ur m

ath

em

atisch

e S

tatistik, T.U

. M¨a

t: ww

w-m

4.m

ath

em

atik.tu

-muen

chen

.de/m

4/Pa

pers/Ta

sche/riskco

n.p

df

[32

] Y. Tau

man

, “Th

e A

um

an

n-S

hap

ley p

rices: a

surv

ey”, ch

ap

ter 1

8 o

f “Th

e S

hap

ley v

alu

e. E

ssays in

honor o

f Lloyd

S. S

hap

ley”

(19

88

), A. R

oth

(ed

.) Cam

brid

ge U

niv

ersity

Pre

ss, Cam

brid

ge.

[33

] H

.P. You

ng

, “Cost a

lloca

tion”, ch

ap

ter 3

4 o

f “Han

db

ook

of G

am

e T

heory

, Volu

me

2”, R

.J. Au

man

n a

nd

S. H

art, e

dito

rs,

Else

vie

r Scie

nce

, 19

94

.

Ap

pend

ix

A P

roof o

f the n

on

-neg

ativ

ity co

nd

ition

Th

e fo

llow

ing

resu

lt from

sectio

n 6

is pro

ved

here

.

Th

eore

m 8

A su

fficie

nt co

nd

ition fo

r a n

on

-neg

ativ

e, “n

o u

nd

ercu

t” allo

catio

n

to e

xist is:

+,ρ

Xi m

in λ

iXi∀

λ ∈

Rn

i∈N

λ

i≤

ρ i∈

N

i∈N

Page 56: Alocaton Of Risk Capital

Pro

of: Le

t us re

call th

at w

e d

en

ote

d b

y 1

S ∈

Rn

the ch

ara

cteristic v

ecto

r of

the co

alitio

n S

:

(1S

)i =1

if i ∈S

0 o

therw

ise

A n

on-n

eg

ativ

e, “n

o u

nd

ercu

t” allo

catio

n K

exists w

hen

∃K

∈R

nsuch

that

Kt1

S ≤

ρX

i ∀S

N

i∈S

(19

)

Kt1

N =

ρX

i

i∈N

K ≥

0

Usin

g Fa

rkas’s le

mm

a, th

is is eq

uiv

ale

nt to

1N

yN

+1

S y

S ≥

0, ∀

yN

∈R

, ∀y

S ∈

R+,S

N

S

N

= ⇒

ρX

i yN

+ ρ

Xi y

S +

≥ 0

(20

) i∈N

S

Ni∈

S

which

in tu

rn is e

quiv

ale

nt to

yS

, ∀y

S ≥

0,S

N, a

nd

∀i ∈

N,

yN

≥−

Si

= ⇒

ρ( X

i)yS

≥−

ρX

i yN

(21

) S

Ni∈

Si∈

N

Now

, usin

g th

e h

om

og

eneity

an

d th

e su

bad

ditiv

ity o

f ρ,

ρX

i yS

= ρ

yS

Xi

S

Ni∈

SS

Ni∈

S

Page 57: Alocaton Of Risk Capital

≥ ρ

y

S X

i

S

Ni∈

S

= ρ

Xi y

S

i∈N

Si

Th

ere

fore

, a su

fficie

nt co

nd

ition

for (1

9) (o

r (20

) or (2

1)) to

hold

, is

yS

, ∀y

S ≥

0,S

N

, ∀i ∈

N,

yN

≥−

S

i

= ρ

Xi y

S ≥

ρX

i (−y

N )

i∈N

Sii∈

N

Finally

, usin

g th

e d

efin

ition

λi

Si y

S , w

e ca

n w

rite th

e su

fficie

nt co

nd

ition

for (1

9)

∀λ

i ≥0

,i ∈N

,ρ λ

iXi ≥

ρX

i min

λi i∈

Ni∈

Ni∈

N

Note

that in

the la

st step

, we a

lso u

sed

ρ i∈

N X

i ≥0

, a n

ece

ssary

con

ditio

n fo

r the e

xiste

nce

of a

non

-neg

ativ

e, “n

o u

nd

ercu

t” allo

catio

n; ch

eckin

g

yN

=1

,yS

=0

∀S

N in

(20

) show

s this p

oin

t.