Download - A. Yu. Smirnov

Transcript
Page 1: A. Yu. Smirnov

A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia

Page 2: A. Yu. Smirnov

Supernova neutrinos

Graphical representation

Non-linear collective effects. Evolution

Spectral splits

Observational consequences

G.Raffelt, A.Yu. S. Phys. Rev. D76:081301, 2007, arXiv:0705.3221 Phys. Rev. D76:125008, 2007 arXiv:0709.4641Pei Hong Gu, A.Yu. S. in preparation

Page 3: A. Yu. Smirnov
Page 4: A. Yu. Smirnov

Diffusion Diffusion

Flavor conversion Flavor conversion inside the starinside the star

Propagation Propagation in vacuumin vacuum

Oscillations Oscillations Inside the EarthInside the Earth

Collective Collective effects effects

Page 5: A. Yu. Smirnov

E (e) < E (e) < E ( x )

1011 - 10 12g/cc 0

Page 6: A. Yu. Smirnov

0.5 s

1 s

3 s 5 s7 s

9 s

G. Fuller et al > 3 – 5 s

107 109108 1010

T. Janka, 2006neutrinosphere

Collective effects

Page 7: A. Yu. Smirnov

r

= 2 GF (1 – cos ) n

neutrinosphere

n ~ 1/r2

~ 1/r

~ 1/r4

for large r

n ~ 1033 cm-3 in neutrinosphere in all neutrino species:

electron density: ne ~ 1035 cm-3

= V = 2 GF ne usual matter potential:

neutrino potential:

R = 20 – 50 km

Page 8: A. Yu. Smirnov

``Neutrino oscillations in a variable density medium and neutrino burst due to the gravitational collapse of star’’

ZhETF 91, 7-13, 1986 (Sov. Phys. JETP 64, 4-7, 1986)ArXiv: 0706.0454 (hep-ph)

m2 = (10-6 - 107 ) eV2

sin2 2 = (10-8 - 1)

Conversion in SN can probe:

Ya. B. Zeldovich : Neutrino fluxes from gravitational collapses

G. T. Zatsepin: Detection of supernova neutrinos

L. Stodolsky G Zatsepin, O. Ryazhskaya A. Chudakov

Oscillations of SN neutrinosin vacuum

L. Wolfenstein 1978 Matter effects suppress oscillations inside the star

Pre-history?

Page 9: A. Yu. Smirnov
Page 10: A. Yu. Smirnov

Re e

+ , P = Im e

+ , e

+ e - 1/2

B = (sin 2, 0, cos2)

= ( B x P ) dP dt

Coincides with equation for the electron spin precession in the magnetic field

= e ,

Polarization vector:

P =+

Evolution equation:

i = H d d t

d d t i = (B )

Differentiating P and using equation of motion

m2 /2E

Page 11: A. Yu. Smirnov

= P = (Re e

+ , Im e+ , e

+ e - 1/2)

B = (sin 2m, 0, cos2m) 2 lm

= ( B x ) d dt

Evolution equation

= 2t/ lm - phase of oscillations

P = e+e = Z + 1/2 = cos2Z/2 probability to find e

e

,

Page 12: A. Yu. Smirnov
Page 13: A. Yu. Smirnov
Page 14: A. Yu. Smirnov
Page 15: A. Yu. Smirnov
Page 16: A. Yu. Smirnov
Page 17: A. Yu. Smirnov
Page 18: A. Yu. Smirnov

Pure adiabatic conversion Partialy adiabatic conversion

e

If initial mixing is small: P ~ BP ~ Bmm

in matter

Page 19: A. Yu. Smirnov
Page 20: A. Yu. Smirnov

Collective flavor transformations

ee

e

e

b b b

b

Z0Z0

J. Pantaleone

Refraction in neutrino gases

e

bb

e

A = 2 GF (1 – vee vb )

e

e

e

b

b

u-channel

t-channel (p)

(q)

(p)

(q)

can lead to the coherent effect

Momentum exchange flavor exchange

flavor mixing

elastic forward scattering

velocities

Page 21: A. Yu. Smirnov

e

b

b

Flavor exchange between the beam (probe) and background neutrinos

J. PantaleoneS. SamuelV.A. Kostelecky

e

e

backgroundcohere

nt

A. FriedlandC. Lunardini

projection

projection

Be ~ i ie*i

ib = ie e + i

If the background is in the mixed state:

w.f. give projectionssum over particles of bg.

Contribution to the Hamiltonianin the flavor basis

H = 2 GF i (1 – vee vib ) ie

iei*

ie*i

i

The key point is that the background

should be in mixed flavor state.

For pure flavor state the off-diagonal

terms are zero. Flavor evolution

should be triggered by some other effect.

Page 22: A. Yu. Smirnov

Total Hamiltonian for individual neutrino state:

H = - cos 2 + V + B sin 2 + Be sin 2 + Be* cos 2 - V - B

m2 /2EV – describes scattering on electrons

Be ~ n ie*i - non-linear problem

Two classes of collective effects:

S. Samuel , H. Duan, G. Fuller, Y-Z Qian

Kostelecky & SamuelPastor, Raffelt, SemikozSynchronized oscillations

Bipolar oscillations

Page 23: A. Yu. Smirnov

H = (HH)

dt P= HH x P

Suppose we know the Hamiltonian H for neutrino state with frequency

Represent it in the form

- is Pauli matrices

Then equation for the polarization vector:

Page 24: A. Yu. Smirnov

dt P=(- B + L + D) x P

dt P=(+ B + L + D) x P = V = 2 GF ne

= 2 GF n

D= P - P

P= d P P= d P

where

(in single angle approximation)

Ensemble of neutrino polarization vectors P

L = (0, 0, 1)

inf 0

inf 0

Total polarization vectors for neutrinos and antineutrinos

m2 /2E

- collective vector

Page 25: A. Yu. Smirnov

In rotating frame

BB

``trapping cone’’

PPLL

B rotates with high frequency

Without interactions, P P would precess around B B with frequency

P has no time to follow B

B precesses with small angle ~ near the initial position

With interactions, D D provides with the force which pushes P outside the trapping cone

transition to the rotating system around L with frequency -

Page 26: A. Yu. Smirnov

In rotating frame

``trapping cone’’

PP

In presence of both neutrinosand antineutrinos interactions, produce a force which pushes P outside the trapping cone

PP F

F = D x P = 0

If PP is outside the trapping cone quick rotation of B B can be averaged

In the original frame one can understand this ``escaping evolution’’ as a kind of parametric resonance.

Page 27: A. Yu. Smirnov

D= ds P

dt P=(B + D) x P

Introducing negative frequencies for antineutrinos P= P > 0

wheres = sign()

Equation of motion for D: integrating equation of motion with sw

dt D= B x M M= ds P where

+ inf

- inf

dt P= H() x P

H=(B + D)

inf

- inf

where

In another form: In another form:

Page 28: A. Yu. Smirnov

If |D| >> - the individual vectors form largethe self-interaction term dominates

M = syn D

ds P

syn = dsP

synchronization frequency

dt D= synB x D

D - precesses around B with synchronization frequency

dt P~ D x P

- evolution is the same for all modes – P are pinned to each other

does not depend on D

B

Page 29: A. Yu. Smirnov

dt D= B x M If B = const, from equation

dt ( D B ) = 0

DB = ( D B ) = const

For small effective angle DB ~ Dz

- total electron lepton number is conserved

Strictly: B is the mass axis – so the total 1 - number is conserved

Play crucial role in evolution and split phenomenon

Page 30: A. Yu. Smirnov

H= B + D

B

H

D

dt P= H() x P

dt D= cB x D

D precesses around B with frequency c

H precesses around B with the same frequency as D P precesses around H

eff ( P) ~ eff(H)

adiabaticity is not satisfied

in general,

eff ( P) >> eff(H)

Page 31: A. Yu. Smirnov
Page 32: A. Yu. Smirnov

= m2/2E

e

thin lines – initial spectrumthick lines – after split

neutrinosantineutrinos

Page 33: A. Yu. Smirnov

Spectral split: result of the adiabatic evolution of ensemble of neutrinos propagating from large neutrino densities to small neutrino densities

r

= 2 GF (1 – cos ) n

neutrinosphere

n ~ 1/r2

~ 1/r

~ 1/r4

for large r

Page 34: A. Yu. Smirnov

Split is a consequence of

existence of special frame in the flavor space, the adiabatic frame, which rotates around B with frequency C

change (decrease) of the neutrino density: 0

adiabatic evolution of the neutrino ensemble in the adiabatic frame

Split frequency: split= C()

Spectral split exists also in usual MSW case without self-interactionwith zero split frequency

It is determined by conservation of lepton number

Page 35: A. Yu. Smirnov

Relative motion of Pand H can be adiabatic:

Adiabatic frame: co-rotating frame formed by Dand B

Since DD is at rest, motion of Hin this plane is due to change (t) only.If changes slowly enough adiabatic evolution

C – is its frequency

Pfollow H((t))

H=(-C)B + DIn the adiabatic frame:In the adiabatic frame:

Page 36: A. Yu. Smirnov

C - frequency of the co-rotating frame

Individual Hamiltonians in the co-rotating frame

H=(-C)B + D

Pfollow H((t))

Initial mixing angle is very small: P~ H((t)) Pare co-linear with H((t))

P= H() P

H= H/|H| - unit vector in the direction of HamiltonianP=|P| - frequency spectrum of neutrinos given by initial condition

Page 37: A. Yu. Smirnov

one needs to find C and Dperp P= H() P

DB is conserved and given by the initial condition

Pperp= (Hperp/ H) P

PB= (HB/ H) P

HB

Hperp

H

Hperp = Dperp

HB = -C+ DB

Projecting:

Inserting this into the previous equations and integrating over s d

From the expression for H()

B

DB = ds ( -C+ DB) P

(-C+ DB)2 + ( Dperp)2

1 = ds P

[(-C)/ + DB]2 + Dperp2

Equations forC and Dperp

``sum rules’’

Page 38: A. Yu. Smirnov

H=(-C)B + D

In the limit 0 H (–C0)B

C0 = split

>C0

<C0

0

(-C)B

H

D

H

H

initial e

initial

C0 = C ( = 0)

In adiabatic (rotating) frame

Page 39: A. Yu. Smirnov

Is determined by the lepton number conservation (and initial energy spectrum)

Flux of neutrinos is larger than flux of antineutrinos – split in the neutrino channel

DB> 0

DB(initial) = DB(final) + continuity

In final state the non-zero lepton number is due to high frequency tail of the neutrino spectrum >split

DB= d P inf split

or lepton number in antineutrinos is compensated by the low frequency part of the neutrino spectrum

d P= d P split

0

-inf

Page 40: A. Yu. Smirnov

original spectrum(mixed state)

final spectrum (exact)

final spectrum (adiabatic)

P

B

initial state

Adiabatic solution: sharp splitspread – due to adiabaticity violation

Adiabaticity is violated for modes with frequencies near the split

1~e

2~

0.5

PB

final state

Page 41: A. Yu. Smirnov

Adiabatic solution

Exact solution

PB

density decreases for 51 modes

adiabaticity violation

split

PB

PB

Pp

erp

Page 42: A. Yu. Smirnov

PB

Page 43: A. Yu. Smirnov

D

pP

initial

final

PB

initial spectrum

final spectrum

Page 44: A. Yu. Smirnov

Adiabatic solutionExact numerical calculations

Wiggles:“nutations’’

PB

PB

Page 45: A. Yu. Smirnov

Sharpness is determined by degree of adiabaticity violation

the variance of root mean square width ~ width on the half height

universal function

PB

Pp

erp

Page 46: A. Yu. Smirnov

Wiggles - nutations

Solid lines – adiabatic solution

Pp

erp

PB

evolution of 25 modes

Spinning top

Page 47: A. Yu. Smirnov

e

l/ l0

e

anti-neutrinos neutrinos

1

-1

anti-neutrinos neutrinos

0

Electron neutrinos are convertedantineutrinos - not

split= 0

Adiabaticityviolation

Page 48: A. Yu. Smirnov

Further evolution

Conversion in the mantle of the star

Earth matter effect

Determination of the neutrino mass hierarchy

B Dasgupta, A. Dighe, A Mirizzi,arXiv: 0802.1481

B Dasgupta, A. Dighe, A Mirizzi, G. RaffeltarXiv: 0801.1660

Neutronization burst:

G. Fuller et al.

Page 49: A. Yu. Smirnov
Page 50: A. Yu. Smirnov

SN bursts have enormous potential to study the low energy (< 100 MeV) physics phenomena

Standard scenario: sensitivity to sin2 13< 10-5 , mass hierarchy

Non-linear effects related to neutrino self-interactions; Can lead to new phenomena: syncronized oscillations, bi-polar flipsspectral splits

Spectral splits: concept of adiabatic (co-rotating) frame splits are result of the adiabatic evolution in the adiabatic frame

Observable effects