Download - 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Transcript
Page 1: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

3.7 Decades of Quantum Computing

Edward (Denny) Dahl

D‐Wave Systems

April 3, 2019

Page 2: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  2

Simulating Physics with Computers – Richard Feynman

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Page 3: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  3

Q: How do you build a qubit?A: Carefully

Superconducting loopsRF SQUIDS

Trapped ionsYtterbium atoms & lasers

Topological matterMajorana fermions

Kamerlingh Onnes

Nobel prize ‐ 1913

Brian Josephson

Nobel prize – 1973

Wolfgang PaulHans Dehmelt

Nobel prize – 1989

Kang WangShoucheng Zhang

Nobel prize – ????

Page 4: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  4

Standard model of quantum computing

time

gates

This example quantum circuit has nine qubits and so the wavefunction is a complex vector of size 2 512.

Each gate acts on this wavefunction as a unitary matrix of size 512 x 512.

Measurement projects the vector onto a subspace. qubit

Page 5: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  5

Shor’s algorithm

Peter Shor’s algorithm (1994) relies heavily on 

number theory and the Quantum Fourier Transform, which is essentially an FFT 

(Fast Fourier Transform) as 

implemented on a gate model quantum 

computer.

3‐qubit QFT:  𝜔 𝑒

𝑈12

1 11 𝜔

1 1𝜔 𝜔

1 𝜔1 𝜔

𝜔 𝜔𝜔 𝜔

1 1𝜔 𝜔

1 1𝜔 𝜔

1 𝜔𝜔 𝜔

𝜔 𝜔𝜔 𝜔

1 𝜔1 𝜔

1 𝜔𝜔 𝜔

1 𝜔1 𝜔

𝜔 𝜔𝜔 𝜔

1 𝜔𝜔 𝜔

1 𝜔𝜔 𝜔

1 𝜔𝜔 𝜔

𝜔 𝜔𝜔 𝜔

Page 6: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  6

Waves and noise

Page 7: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  7

Error correction

• Classical computing has error correction– E.g., SECDED is Single Error Correct Double Error Detect

• Peter Shor (1995) showed that certain kinds of errors in a Gate Model Quantum Computer could be corrected:– Shor code: 1 logical qubit requires 9 physical qubits

– Steane code: 1 logical qubit requires 7 physical qubits

– CSS codes: 1 logical qubit requires 5 physical qubits

• General purpose error correcting codes (required for factoring, chemistry, etc.) take many more qubits:– Gottesman: 1 logical qubit requires >100 physical qubits

– Fowler: 𝐹𝑒 𝑆 with 112 orbitals requires 27,000,000 physical qubits

– O’Gorman: 1000‐bit Shor requires 173,000,000 physical qubits

Page 8: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  8

A new model of quantum computing: Annealing

Page 9: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  9

Quantum annealing finds minima on a landscape

Page 10: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  10

D‐Wave is born (1999) & goes QA (2004)

D‐Wave chose Quantum Annealing over Gate Model after an extensive evaluation of botharchitectures and allimplementation technologies

Page 11: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  11

D‐Wave product generations

2011DW‐One128 qubits352 couplers

2013DW‐Two512 qubits

1472 couplers

2015DW‐2X

1152 qubits3360 couplers

2017DW‐2000Q2048 qubits6016 couplers

Lockheed/USC Google/NASA LANL

Page 12: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  12

Quantum Hamiltonian is an operator on Hilbert space:

ℋ 𝑠 𝐴 𝑠 𝜎 𝐵 𝑠 𝑎 𝜎 𝑏 𝜎 𝜎

Quantum & Classical Programming Models

s = t/T

Corresponding classical optimization problem:

Obj 𝑎 , 𝑏 ; 𝑞 𝑎 𝑞 𝑏 𝑞 𝑞

transverse field

Page 13: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  13

Three paths to programming the D‐Wave

D‐Wave Applications

Optimization

NASA – Scheduling applications

Volkswagen – Traffic flow optimization

Recruit – Display advertising optimization

Machine Learning

Google ‐ Qboost

LANL – Deep learning vs. quantum inference

Material simulation

Harris ‐ 3D Spin Glass

King ‐ 2D XY model with Kosterlitz‐Thouless phase 

transition

ORNL ‐ quantum magnetization plateaus

Page 14: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  14

Applying quantum annealing to databases

Page 15: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  15

Remote Quantum Computing: LEAP & Ocean

FREE quantum computing at https://cloud.dwavesys.com

Page 16: 3.7 Decades of Quantum Computing...3.7 Decades of Quantum Computing Edward (Denny) Dahl D‐Wave Systems April 3, 2019

Copyright © D‐Wave Systems Inc.  16

The next step

The worldof 

applications

QuantumComputing

Thank you