Download - 02-7 - Longitudinal Control

Transcript
Page 1: 02-7 - Longitudinal Control

Flight Dynamics

AAE 6710

Lesson 02-7

Longitudinal Control

Page 3: 02-7 - Longitudinal Control
Page 4: 02-7 - Longitudinal Control

Factors Affecting Design

β€’ Control Effectiveness: Measure of how effective the control is in producing the desired control moment

β€’ Hinge Moments: The aerodynamic moments that must be overcome to rotate the control surface

β€’ Aerodynamic & Mass Balancing: Techniques to keep the control forces within an acceptable range

Page 5: 02-7 - Longitudinal Control

Effect of Elevator Deflection

π‘ͺ𝑳𝒕 = π‘ͺπ‘³πœΆπ’•π›Όπ‘‘ = π‘ͺπ‘³πœΆπ’• 𝛼𝑀 βˆ’ 𝑖𝑀 βˆ’ νœ€ + 𝑖𝑑

π‘ͺπ’Žπ’„π’ˆπ’•= πœΌπ‘½π‘―π‘ͺπ‘³πœΆπ’• πœ–0 + 𝑖𝑀 βˆ’ 𝑖𝑑 βˆ’ πœΌπ‘½π‘―π‘ͺπ‘³πœΆπ’• 1 βˆ’

π‘‘νœ€

π‘‘π›ΌπœΆπ’˜

𝛿𝑒 = 0

For arbitrary 𝛿𝑒

π‘ͺ𝑳𝒕 = π‘ͺπ‘³πœΆπ’•π›Όπ‘‘ = π‘ͺπ‘³πœΆπ’• 𝛼𝑀 βˆ’ 𝑖𝑀 βˆ’ νœ€ + 𝑖𝑑 + 𝜏 𝛿𝑒

π‘ͺπ’Žπ’„π’ˆπ’•= πœΌπ‘½π‘―π‘ͺπ‘³πœΆπ’• πœ–0 + 𝑖𝑀 βˆ’ 𝑖𝑑 βˆ’ 𝜏 𝛿𝑒 βˆ’ πœΌπ‘½π‘―π‘ͺπ‘³πœΆπ’• 1 βˆ’

π‘‘νœ€

π‘‘π›ΌπœΆπ’˜

Page 6: 02-7 - Longitudinal Control

Increment in Lift When the elevator is deflected, it changes the lift of the airplane.

𝑳 = 𝐿𝑀 + 𝐿𝑑

π‘ͺ𝑳1

2πœŒπ‘‰2𝑆 = 𝐢𝐿𝑀

1

2πœŒπ‘‰2𝑆 + 𝐢𝐿𝑑

1

2πœŒπ‘‰π‘‘

2𝑆𝑑

π‘ͺ𝑳 = 𝐢𝐿𝑀 + πœ‚π‘†π‘‘π‘†πΆπΏπ‘‘

𝐢𝐿𝑑 = 𝐢𝐿𝛼𝑑𝛼𝑑 = 𝐢𝐿𝛼𝑑

𝛼𝑀 βˆ’ 𝑖𝑀 βˆ’ νœ€ + 𝑖𝑑 + 𝜏 𝛿𝑒

= 𝐢𝐿𝛼𝑑𝛼𝑀 βˆ’ 𝑖𝑀 βˆ’ νœ€ + 𝑖𝑑 + 𝐢𝐿𝛼𝑑

𝜏 𝛿𝑒

βˆ†π‘ͺ𝑳 = βˆ†π‘ͺ𝑳𝒕 = πœ‚π‘†π‘‘π‘†πΆπΏπ›Όπ‘‘

𝜏 𝛿𝑒 𝒅π‘ͺπ‘³π’•π’…πœΉπ’†

= πΆπΏπ›Όπ‘‘πœ 𝝉 =

𝑑𝛼𝑑𝑑𝛿𝑒

Page 7: 02-7 - Longitudinal Control

Elevator Effectiveness

𝒅π‘ͺπ‘³π’•π’…πœΉπ’†

= π‘ͺπ‘³πœΆπ’•π‰

β€’ 𝒅π‘ͺ𝑳𝒕/π’…πœΉπ’† is the elevator effectiveness

β€’ The elevator effectiveness is proportional to the size of the flap being used as an elevator and can be estimated from the equation: where 𝝉 is the change in tail angle of attack per unit deflection of the elevator and is called the elevator effectiveness parameter

𝝉 =𝑑𝛼𝑑𝑑𝛿𝑒

Page 8: 02-7 - Longitudinal Control

Elevator Effectiveness Parameter

Elevator Effectiveness is proportional to the size of flap being used as an elevator

Page 9: 02-7 - Longitudinal Control

Increment in Pitching Moment

If βˆ†πΆπ‘š = πΆπ‘šπ›Ώπ‘’π›Ώπ‘’ π‘€β„Žπ‘’π‘Ÿπ‘’ πΆπ‘šπ›Ώπ‘’

=π‘‘πΆπ‘šπ‘‘π›Ώπ‘’

βˆ†π‘ͺπ’Ž = βˆ†π‘ͺπ’Žπ’•= βˆ’πœ‚π‘‰π»πΆπΏπ›Όπ‘‘

𝜏 𝛿𝑒 = βˆ’π‘‰π»πœ‚π‘‘πΆπΏπ‘‘π‘‘π›Ώπ‘’

𝛿𝑒

π‘ͺπ’Žπ’„π’ˆπ’•= πœΌπ‘½π‘―π‘ͺπ‘³πœΆπ’• πœ–0 + 𝑖𝑀 βˆ’ 𝑖𝑑 βˆ’ 𝜏 𝛿𝑒 βˆ’ πœΌπ‘½π‘―π‘ͺπ‘³πœΆπ’• 1 βˆ’

π‘‘νœ€

π‘‘π›ΌπœΆπ’˜

π‘ͺπ’ŽπœΉπ’†= βˆ’π‘‰π»πœ‚

𝒅π‘ͺπ‘³π’•π’…πœΉπ’†

= βˆ’π‘‰π»πœ‚πΆπΏπ›Όπ‘‘πœ

The derivative π‘ͺπ’ŽπœΉπ’† is called the elevator control power

Page 10: 02-7 - Longitudinal Control

Influence of Elevator on πΆπ‘š vs 𝛼 curve

π‘ͺπ’Ž = πΆπ‘š0+ πΆπ‘šπ›Ό

𝛼 + πΆπ‘šπ›Ώπ‘’π›Ώπ‘’

Page 11: 02-7 - Longitudinal Control

Elevator Angle to Trim

An airplane is said to be trimmed if the forces and moments acting on the plane are in equilibrium

π‘ͺπ’Žπ’•π’“π’Šπ’Ž= 𝟎 = πΆπ‘š0

+ πΆπ‘šπ›Όπ›Όπ‘‘π‘Ÿπ‘–π‘š + πΆπ‘šπ›Ώπ‘’

π›Ώπ‘’π‘‘π‘Ÿπ‘–π‘š

πœΉπ’†π’•π’“π’Šπ’Ž = βˆ’πΆπ‘š0

+ πΆπ‘šπ›Όπ›Όπ‘‘π‘Ÿπ‘–π‘š

πΆπ‘šπ›Ώπ‘’

π‘ͺπ‘³π’•π’“π’Šπ’Ž = πΆπΏπ›Όπ›Όπ‘‘π‘Ÿπ‘–π‘š + πΆπΏπ›Ώπ‘’π›Ώπ‘’π‘‘π‘Ÿπ‘–π‘š

πœΆπ’•π’“π’Šπ’Ž =πΆπΏπ‘‘π‘Ÿπ‘–π‘š βˆ’ πΆπΏπ›Ώπ‘’π›Ώπ‘’π‘‘π‘Ÿπ‘–π‘š

𝐢𝐿𝛼

πΆπΏπ‘‘π‘Ÿπ‘–π‘š =π‘Š

1

2πœŒπ‘‰2𝑆

Page 12: 02-7 - Longitudinal Control

Elevator Angle to Trim

If we substitute the value of πœΆπ’•π’“π’Šπ’Ž in the πœΉπ’†π’•π’“π’Šπ’Ž equation, we get:

πœΉπ’†π’•π’“π’Šπ’Ž = βˆ’πΆπ‘š0

𝐢𝐿𝛼 + πΆπ‘šπ›ΌπΆπΏπ‘‘π‘Ÿπ‘–π‘š

πΆπ‘šπ›Ώπ‘’πΆπΏπ›Ό βˆ’ πΆπ‘šπ›Ό

𝐢𝐿𝛿𝑒

πœΆπ’•π’“π’Šπ’Ž = πΆπ‘š0

𝐢𝐿𝛿𝑒 + πΆπ‘šπ›Ώπ‘’πΆπΏπ‘‘π‘Ÿπ‘–π‘š

πΆπ‘šπ›Ώπ‘’πΆπΏπ›Ό βˆ’ πΆπ‘šπ›Ό

𝐢𝐿𝛿𝑒

Page 13: 02-7 - Longitudinal Control

Elevator Angle to Trim

π‘ͺπ’Žπ’•π’“π’Šπ’Ž= 𝟎 = πΆπ‘š0

+ πΆπ‘šπ›Όπ›Όπ‘‘π‘Ÿπ‘–π‘š + πΆπ‘šπ›Ώπ‘’

π›Ώπ‘’π‘‘π‘Ÿπ‘–π‘š

πΆπΏπ‘‘π‘Ÿπ‘–π‘š =π‘Š

1

2πœŒπ‘‰2𝑆

∴ πœΉπ’†π’•π’“π’Šπ’Žβ‰ˆ 𝛿𝑒0 βˆ’πΆπΏπ‘‘π‘Ÿπ‘–π‘šπΆπ‘šπ›Ώπ‘’

𝒅π‘ͺπ’Ž

𝒅π‘ͺ𝑳 𝑓𝑖π‘₯ where 𝛿𝑒0 = 𝛿𝑒 π‘Žπ‘‘ π‘§π‘’π‘Ÿπ‘œ 𝐢𝐿 = βˆ’

πΆπ‘š0

πΆπ‘šπ›Ώπ‘’

= πΆπ‘š0+

π‘‘πΆπ‘šπ‘‘πΆπΏ 𝑓𝑖π‘₯

πΆπΏπ›Όπ›Όπ‘‘π‘Ÿπ‘–π‘š + πΆπ‘šπ›Ώπ‘’π›Ώπ‘’π‘‘π‘Ÿπ‘–π‘š

0 β‰ˆ πΆπ‘š0+

π‘‘πΆπ‘šπ‘‘πΆπΏ 𝑓𝑖π‘₯

πΆπΏπ‘‘π‘Ÿπ‘–π‘š + πΆπ‘šπ›Ώπ‘’π›Ώπ‘’π‘‘π‘Ÿπ‘–π‘š

Page 14: 02-7 - Longitudinal Control

Elevator Angle for Trim

Page 15: 02-7 - Longitudinal Control

Remarks

β€’ For a given c.g. location π›Ώπ‘‘π‘Ÿπ‘–π‘š is a linear function of πΆπΏπ‘‘π‘Ÿπ‘–π‘š

β€’ When an airplane is trimmed at a chosen 𝐢𝐿 by setting the elevator at corresponding π›Ώπ‘‘π‘Ÿπ‘–π‘š, to fly at a lower speed which implies higher 𝐢𝐿 the pilot would need to apply more negative elevator deflection or the incremental lift on the tail would be negative or Δ𝐿𝑇 would be negative

Page 16: 02-7 - Longitudinal Control

Remarks

β€’ In trim (balanced) condition, the setting of the elevator determines the airplane's trim speed - a given elevator position has only one lift coefficient (and one speed at a given altitude) at which the aircraft will maintain a constant (un-accelerated) condition

Page 17: 02-7 - Longitudinal Control

Remarks

β€’ Military airplanes which are highly maneuverable, sometimes have the following features:

– An all movable tail in which the entire horizontal tail is rotated to achieve higher Δ𝑀𝑐𝑔

– Relaxed static stability wherein may have a small positive value πΆπ‘šπ›Ό

Page 18: 02-7 - Longitudinal Control

Example 1

An airplane has elevator power πΆπ‘šπ›Ώπ‘’ of -0.010 per degree.

The c.g. is placed such that the static margin is 10% of

m.a.c. Further, the tail setting , 𝑖𝑑 ,is such that the airplane is

in trim, with zero elevator deflection, at 𝐢𝐿 = 0.5. Plot the

curves of πΆπ‘šπ‘π‘” vs 𝐢𝐿 for constant elevator angles of

𝛿𝑒 = βˆ’200, βˆ’100, 00 , 100, 200. Cross plot these curves to

obtain the curve corresponding to π›Ώπ‘‘π‘Ÿπ‘–π‘š vs. πΆπΏπ‘‘π‘Ÿπ‘–π‘š. Note

πΆπΏπ‘šπ‘Žπ‘₯= 1.5.

Page 19: 02-7 - Longitudinal Control

πΆπ‘šπ‘π‘”= πΆπ‘š0

+ πΆπ‘šπ›Όπ›Ό + πΆπ‘šπ›Ώπ‘’

𝛿𝑒 = πΆπ‘š0+ π‘‘πΆπ‘šπ‘π‘”

𝑑𝐢𝐿 𝐢𝐿 + πΆπ‘šπ›Ώπ‘’π›Ώπ‘’

Since the airplane is in equilibrium with zero elevator deflection at 𝐢𝐿 = 0.5

0 = πΆπ‘š0βˆ’ 0.1 βˆ— 0.5 + 0.0 πΆπ‘š0

= 0.05

πΆπ‘šπ‘π‘”= 0.05 βˆ’ 0.1𝐢𝐿 βˆ’ 0.01𝛿𝑒

𝛿𝑒 = βˆ’200, πΆπ‘šπ‘π‘”= 0.05 βˆ’ 0.1𝐢𝐿 βˆ’ 0.01 βˆ’200

= +0.25 βˆ’ 0.1𝐢𝐿 𝛿𝑒 = βˆ’100, πΆπ‘šπ‘π‘”

= +0.15 βˆ’ 0.1𝐢𝐿

𝛿𝑒 = 00, πΆπ‘šπ‘π‘”= +0.05 βˆ’ 0.1𝐢𝐿

𝛿𝑒 = +100, πΆπ‘šπ‘π‘”= βˆ’0.05 βˆ’ 0.1𝐢𝐿

𝛿𝑒 = +100, πΆπ‘šπ‘π‘”= βˆ’0.15 βˆ’ 0.1𝐢𝐿

Static Margin= 0.1 π‘‘πΆπ‘šπ‘π‘”π‘‘πΆπΏ = βˆ’0.1

Solution

πΆπ‘šπ›Ώπ‘’= βˆ’0.01

Page 20: 02-7 - Longitudinal Control

π‘ͺπ’Žπ’„π’ˆ 𝒗𝒔 π‘ͺ𝑳

Page 21: 02-7 - Longitudinal Control

π›Ώπ‘‘π‘Ÿπ‘–π‘š vs 𝐢𝐿

π›Ώπ‘‘π‘Ÿπ‘–π‘š = 𝛿𝑒0 βˆ’ π‘‘πΆπ‘šπ‘π‘”π‘‘πΆπΏ πΆπΏπ‘‘π‘Ÿπ‘–π‘š πΆπ‘šπ›Ώπ‘’

π›Ώπ‘‘π‘Ÿπ‘–π‘š = 50 βˆ’ βˆ’0.1 πΆπΏπ‘‘π‘Ÿπ‘–π‘š βˆ’0.01 = 50 βˆ’ 10 βˆ— 𝐢𝐿

Note that π›Ώπ‘‘π‘Ÿπ‘–π‘š = 0 π‘Žπ‘‘ πΆπΏπ‘‘π‘Ÿπ‘–π‘š = 0.5

∴ 0 = 𝛿𝑒0 βˆ’βˆ’0.1

βˆ’0.01βˆ— 0.5 𝛿𝑒0 = 50

Page 22: 02-7 - Longitudinal Control

Flight Measurement of XNP

Page 23: 02-7 - Longitudinal Control

Procedure

π‘€β„Žπ‘’π‘› πΆπ‘šπ›Ό= 0,

π’…πœΉπ’†π’•π’“π’Šπ’Žπ’…π‘ͺπ‘³π’•π’“π’Šπ’Ž

π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ π‘§π‘’π‘Ÿπ‘œ

π’…πœΉπ’†π’•π’“π’Šπ’Žπ’…π‘ͺπ‘³π’•π’“π’Šπ’Ž

= βˆ’πΆπ‘šπ›Ό

πΆπ‘šπ›Ώπ‘’πΆπΏπ›Ό βˆ’ πΆπ‘šπ›Ό

𝐢𝐿𝛿𝑒

πœΉπ’†π’•π’“π’Šπ’Ž = βˆ’πΆπ‘š0

𝐢𝐿𝛼 + πΆπ‘šπ›ΌπΆπΏπ‘‘π‘Ÿπ‘–π‘š

πΆπ‘šπ›Ώπ‘’πΆπΏπ›Ό + πΆπ‘šπ›Ό

𝐢𝐿𝛿𝑒

Page 24: 02-7 - Longitudinal Control

Neutral Point

Page 25: 02-7 - Longitudinal Control

Ground Effect

– The slope of lift curve of the wing, i.e. 𝐢𝐿𝛼𝑀 increases slightly

– The downwash due to wing decreases considerably

– Result: The airplane becomes more stable and requires more negative elevator deflection

Page 26: 02-7 - Longitudinal Control

Limitation on Fwd Movement of CG

β€’ In Free Flight: Forward c.g. location at which the maximum negative elevator deflection would be just able to permit trim at πΆπΏπ‘šπ‘Žπ‘₯

β€’ Near Ground: Requirement of more negative elevator deflection due to increased stability in ground effect

Page 27: 02-7 - Longitudinal Control

Limitation on Fwd Movement of CG

β€’ Flare at Landing: Additional elevator deflection to compensate for gusts and to flare the aircraft. This requirement dictates a π‘‘πΆπ‘š π‘‘πΆπΏπ‘šπ‘Žπ‘₯

less than the value required for

πΆπΏπ‘šπ‘Žπ‘₯only

Page 28: 02-7 - Longitudinal Control

Restrictions on C.G. Movement from Stick Fixed Stability Considerations

Page 29: 02-7 - Longitudinal Control

Example 2.3 (Nelson)

Page 30: 02-7 - Longitudinal Control

Solution

Page 31: 02-7 - Longitudinal Control
Page 32: 02-7 - Longitudinal Control

H.W. Assignment # 3

Solve problems 2.4, 2.6, 2.7, 2.9 & 2.10 from Nelson’s book Submission date: 14 Apr. 2015 Submit at the start of class on due date (even if you plan to be absent). No credit afterwards. Do not copy any assignment.