Yu. Bocharov , A. Gumenyuk , A. Klyuev , A. Simakov

17
11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1 A New Data Acquisition System A New Data Acquisition System based on based on Asynchronous Technique Asynchronous Technique Yu. Bocharov, A. Gumenyuk, A. Klyuev, Yu. Bocharov, A. Gumenyuk, A. Klyuev, A. Simakov A. Simakov

description

A New Data Acquisition System based on Asynchronous Technique. Yu. Bocharov , A. Gumenyuk , A. Klyuev , A. Simakov. Objectives. To compare architectures Analog FIFO per channel vs. Dig.FIFO per ADC - PowerPoint PPT Presentation

Transcript of Yu. Bocharov , A. Gumenyuk , A. Klyuev , A. Simakov

Page 1: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 11

A New Data Acquisition System A New Data Acquisition System based onbased on

Asynchronous TechniqueAsynchronous Technique

Yu. Bocharov, A. Gumenyuk, A. Klyuev, A. SimakovYu. Bocharov, A. Gumenyuk, A. Klyuev, A. Simakov

Page 2: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 22

To compare architecturesTo compare architecturesAnalog FIFO per channel vs. Dig.FIFO per ADC Analog FIFO per channel vs. Dig.FIFO per ADC

To estimate a data loss for systems based on To estimate a data loss for systems based on architectures compared by a Monte Carlo architectures compared by a Monte Carlo modelingmodeling

To define the ADC specificationsTo define the ADC specifications

ObjectivesObjectives

Page 3: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 33

A New Readout System ArchitectureA New Readout System Architecture

As an example – 2 ADC As an example – 2 ADC per 128 AFE channelsper 128 AFE channelsOther variants – 1, 4 ADCOther variants – 1, 4 ADC

PD – peak detectorPD – peak detector

Main FeatureMain FeatureDigital FIFO per ADCDigital FIFO per ADC

againstagainstAnalog FIFO per channelAnalog FIFO per channel

Page 4: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 44

Step 1Step 1

When a hit occurs in a channel PD locks the this channel in and sends EVENT signal to the control unit

Page 5: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 55

Step 2Step 2

The control unit writes a channel number and a time stamp into a Dual-port Memory/FIFO. Any type of arbiter may be used to prevent conflicts of writing

Page 6: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 66

Step 3Step 3

The High Speed ADC converts the outputs of channels which numbers are stored in FIFO

Page 7: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 77

Step 4Step 4

Converted data conjunctly with a channel number and a time stamp are transmitted to the external memory bus

Page 8: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 88

Step 5Step 5

When the conversion is finished a control unit initializes PD and corresponding MEM content and connects ADC to the next channel or switches it to a shutdown state if FIFO is empty

Page 9: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 99

Structure of the arbitration logic for analog de-randomizer Structure of the arbitration logic for analog de-randomizer (2007)(2007)

Page 10: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1010

Simulation of the synthesized arbitration logicSimulation of the synthesized arbitration logic

Page 11: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1111

Arbitration logic Area Estimation Arbitration logic Area Estimation (Encounter, Faraday standard cells, UMC 0.18)(Encounter, Faraday standard cells, UMC 0.18)

Page 12: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1212

0,0001

0,001

0,01

0,1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12

Total of hits per cycle Total of hits per cycle probability (%) forprobability (%) for128 (a), 64 (b), 32 (c) 128 (a), 64 (b), 32 (c) channel systemchannel systemat 5% channel occupancy at 5% channel occupancy for Poisson processfor Poisson processMean – 6.4, 3.2, 1.6 Mean – 6.4, 3.2, 1.6

a

b

c

Page 13: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1313

0,01

0,1

1

10

100

0 20 40 60 80 100 120 140 160

1 2

%

MSPS

CBM-XYTER data loss as a function of total ADC-channels throughput CBM-XYTER data loss as a function of total ADC-channels throughput at the best (1) and worse (2) – numerical simulationat the best (1) and worse (2) – numerical simulation

Page 14: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1414

1

( ) , ( 20),!

k

k

kDL e k

k

M

λ – Poisson distribution parameter,M – number of channels per ADC,θ – channel occupancy,μ – max number of channels may be A-D converted within one cycle

Analytical estimation of a data loss for a new readout systemAnalytical estimation of a data loss for a new readout system

Page 15: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1515

0,01

0,1

1

10

20 40 60 80 100 120 140 160

1 2 3

%

MSPS

Data loss of a new readout system as function of ADC throughputData loss of a new readout system as function of ADC throughput @ 32 (1), 64(2), 128(3) channels per ADC – analytical and numerical @ 32 (1), 64(2), 128(3) channels per ADC – analytical and numerical

Page 16: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1616

Figure of merit (FOM) commonly usedFigure of merit (FOM) commonly used for ADC characterization for ADC characterization

2d

ADC ENOBs

PFOM

f

PPdd – power dissipation– power dissipation

ENOB – effective number of bitsENOB – effective number of bits

ffss – sampling frequency (ENOB spec) – sampling frequency (ENOB spec)

Page 17: Yu.  Bocharov , A.  Gumenyuk , A.  Klyuev , A.  Simakov

11-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 200811-th CBM Collaboration Meeting. GSI Darmstadt Feb. 26-29, 2008 1717

SummarySummary

CBM-XYTERCBM-XYTER120 MSPS, 128 mW, FOM < 10.7 pJ - 1 AD/chip120 MSPS, 128 mW, FOM < 10.7 pJ - 1 AD/chip60 MSPS, 64 mW, FOM < 10.7 pJ - 2 AD/chip60 MSPS, 64 mW, FOM < 10.7 pJ - 2 AD/chip30 MSPS, 32 mW, FOM < 10.7 pJ - 4 AD/chip30 MSPS, 32 mW, FOM < 10.7 pJ - 4 AD/chipAdvantage – reduced ADC requirements Advantage – reduced ADC requirements

New architectureNew architecture160 MSPS, 128 mW, FOM < 8.0 pJ - 1 AD/chip160 MSPS, 128 mW, FOM < 8.0 pJ - 1 AD/chip105 MSPS, 64 mW, FOM < 6.1 pJ - 2 AD/chip105 MSPS, 64 mW, FOM < 6.1 pJ - 2 AD/chip75 MSPS, 32 mW, FOM < 4.3 pJ - 4 AD/chip75 MSPS, 32 mW, FOM < 4.3 pJ - 4 AD/chipAdvantage – elimination of 512 analog MEM cellsAdvantage – elimination of 512 analog MEM cells

ADC specs @ Pd = 1 mW/channel andADC specs @ Pd = 1 mW/channel andENOB = 6.6 bit (100 quantization levels)ENOB = 6.6 bit (100 quantization levels)Max data loss level = 0.01% Max data loss level = 0.01%