YS Wong , KB Liu (Team Leader) 2011/06/16

29
National Synchrotron Radiation Research Center YS Wong , KB Liu (Team Leader) 2011/06/16 Quadrupole & Sextupole Magnet Power Supply of TPS (Taiwan Photon Source) Power supply team

description

Quadrupole & Sextupole Magnet Power Supply of TPS (Taiwan Photon Source) Power supply team. YS Wong , KB Liu (Team Leader) 2011/06/16. Outline. Introduction Power Supply Circuit structure (Input state and Output state) Experiments Result of Magnet Loading - PowerPoint PPT Presentation

Transcript of YS Wong , KB Liu (Team Leader) 2011/06/16

Page 1: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

YS Wong ,

KB Liu (Team Leader)

2011/06/16

Quadrupole & Sextupole Magnet Power Supply of TPS (Taiwan Photon Source)

Power supply team

Page 2: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Outline

Introduction

Power Supply Circuit structure (Input state and Output state)

Experiments Result of Magnet Loading Programming Function Testing Capture Function Testing Long term stability Testing

Summary

Page 3: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Page 4: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Introduction

Switch Mode Power SupplyIt is an electronic power supply that incorporates a switching device in order to be highly efficient in the conversion of electrical power

A: input EMI filteringB: input filter capacitors;C: transformer;D: output filter coil;E: output filter capacitors. 

Page 5: YS Wong ,      KB Liu (Team Leader) 2011/06/16

Benefits of SPS(switch power supply)

High efficiency and less heat generation(Linear mode power supply efficient 40~50%)

(Switch mode power supply efficient 70~95%)

Tighter regulation

Smaller size

Page 6: YS Wong ,      KB Liu (Team Leader) 2011/06/16

Switching Power Supply Application

Power\Production

PC LaptopCompu

ter Server

Communicatio

n

Industrial

Other Total

1~100W 9.46% 0.18% 3.50% 0.02% 7.92% 21.08%101~300W

59.64%

0.08% 0.17% 1.39% 61.28%

301~500W

8.02% 0.08% 0.17% 1.19% 9.46%

501~1000W

7.04% 7.04%

1001W~ 1.14% 1.14%

Total67.66

%9.46% 7.22% 4.80% 0.36% 10.50%

100.00%

Page 7: YS Wong ,      KB Liu (Team Leader) 2011/06/16

Switching Power Supply Application

Taiwan SPS Export Rate

Page 8: YS Wong ,      KB Liu (Team Leader) 2011/06/16

Unit : Sale Volume (Million) Unit : Sale Volume (Million) Sale Value (Hundred million US)Sale Value (Hundred million US)

Switching Power Supply Marketing

Page 9: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Page 10: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Power Supply Circuit structure

Chroma 62075H-30 Front Panel Chroma 62075H-30 Rear Panel

Quadrupole power supply(18bits) and Sextupole power supply(16bits)

Page 11: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Power Supply Circuit structure

Chroma 62075H-30 input state

R

S

T

Auxiliary Power+5V +16V

+12VO -12VO+48V

40

V_DCBUSEMI Filter

SCR_enable

GNS_DCBUS

MCD40-16

A B

Input State

A region : EMI filter and rectifier 380AC voltage pass to EMI filter and rectifier

B region :Input Capacitor

Page 12: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Power Supply Circuit structure

Voltage Feedback

Current Feedback

Isolated Driver

CV/CC Detect

AC/DC Converter

DC/AC Converter

Dummy Load

+VO

-VO

V_DCBUS

GNS_DCBUS

+SVO-SVO

UCC3895

Chroma 62075H-30 output state

D

E Output State

C region : Power Switching(Full bridge structure)

D region : Transformer E region : Output Capacitor

F region : Control block

C

F

Page 13: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Power Supply Circuit structure

Specification Uni-polar Power Supply

Input Voltage 3 phase 380V ±10%

Current Control Range 0~250 Ampere

Voltage Control Range 0~30 Voltage

Maximum Output Power Energy 7.5 kW

Current Stability±6.25mA p-p (0~30 mins)±12.5mA p-p (0~8 hours)

Output Noise (P-P) 60mV

Maximum Voltage Ripple (rms) 15mV

Maximum Current Ripple (rms) 100mAVoltage Slew Rate Range 0.001V~5V/msCurrent Slew Rate Range 0.001A~1A/ms or INF

Specifications of the 62075H-30 power supply

Page 14: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Magnet Loading Specification

Booster Ring Qaudrupole Magnets

Magnet designation QMNo. of magnets 48Peak current 82AInductance 2.03mHResistance 47m omh

Specification of Booster Ring Qaudrupole Power supplyMagnet designation QSOutput (A/V) 120A/+-425Short term stability (0~30mins) +-5ppm/ +-0.6mALong term stability (0~8 hours) +-10ppm/ +-1.2mAResolution 18bits

Page 15: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Magnet Loading Specification

Storage Ring Qaudrupole and Sextupole MagnetsMagnet designation QM SM

No. of magnets 240 168

Peak current 188A 135A

Inductance 13.6/23.5mH 5.8mH

Resistance 72.2/81.6m omh 43.8m omh

Page 16: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Magnet Loading Specification

Specification of Storage Ring Qaudrupole and Sextupole Power supply

Magnet designation QP SP

Output (A/V) 250A/30V 250A/30V

Short term stability (0~30mins) +-1.25mA +-6.25mA

Long term stability (0~8 hours) +-2.5mA +-12.5mA

Resolution 18bits 16bits

Page 17: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Power Supply Circuit structure

Chroma 62075H-30 power supply in laboratory

Magnet loading

Page 18: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Page 19: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Experiments Result of Magnet Loading

PROG No = 1RUN COUNT = 2PROG CHAIN = NoCLEAR PROG = No

SEQ No = 1 SEQ No = 2

Voltage = 10 (V) Voltage = 10 (V)

Current = 100 (A) Current = 250 (A)

Time = 5.000 (s) Time = 5.000 (s)

SEQ Type = AUTO SEQ Type = AUTO

V S. R. = 1.000 (V/ms) V S. R. = 1.000 (V/ms)

I S. R. = 0.100 (A/ms) I S. R. = 0.100 (A/ms)

Program sequence testing waveform

Programming Function

state 1 : output current 0 to100A at 5second

state 2 : Output current 100A to 250A at 5 second

Page 20: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Experiments Result of Magnet Loading

Capture Function

(1)Trigger INIT

(2)Pre Trigger

(3)Wait Trigger

(4)Post Trigger

(5)Trigger Finish

Page 21: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Experiments Result of Magnet Loading

#540000<byte1><byte2><byte3><byte4>.........<byte39997><byte39998><byte39999><byte40000>

0x00,0x00,0xc8,0x41=25A

Total Sampling Points = 10000

Trigger Point = 5000

Current Data Current Data

Test Sampling Points = 10000 points

Maximum Current Setting = 250A

Capture Function

Pre Trigger Post Trigger

Additional a pulse signal in the machine at 5000 sampling points(Green Line)

Capture 5000 points pre trigger dataCapture 5000 points post trigger data

Page 22: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

LabVIEW Softwave Oscilloscope

Slew rate : 8A/s 0~50A OCP : 50A

Experiments Result of Magnet Loading

Page 23: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Long term output current ripple testing of 250A

One module , output current 250A

Output current ripple +- 20ppm (8 hours)

Experiments Result of Magnet Loading

250.1305(-30ppm)

250.1330(-20ppm)

250.1355(-10ppm)

250.1380(0ppm)

250.1405(10ppm)

250.1430(20ppm)

250.1455(30ppm)

0 1 2 3 4 5 6 7 8

Time(hour)

Cur

rent

(A)

Page 24: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Long term output current ripple testing of 500A

Parallel 2 module , output current 500A

Output current ripple +- 10ppm (8 hours)

Experiments Result of Magnet Loading

500.2300(-30ppm)

500.2375(-20ppm)

500.2450(-10ppm)

500.2525(0ppm)

500.2600(10ppm)

500.2675(20ppm)

500.2750(30ppm)

0 1 2 3 4 5 6 7 8

Time(hour)

Cur

rent

(A)

Power supply Maximum output current is 250A

Page 25: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Long term current output ripple testing at 500A

Connect current sharing line

Connect system bus line

Experiments Result of Magnet Loading

CURRENTSHARING

SYSTEM BUS#1

CURRENTSHARING

SYSTEM BUS#2

IN

OUT

IN

OUT

Page 26: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Output current ripple and frequency bode plot

I250A =3.319mAI500A =1.976mAI750A =1.274mAI1000A =0.817mA

3.319mA

1.976mA

1.274mA

0.817mA

Experiments Result of Magnet Loading

Maximum Current ripple 3.319mA when output current 250A

Page 27: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Page 28: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center

Summary

(1)Low ripple output current will improvement magnet electric fields stability to NSRRC light source.

(2)High digital controller design. (16bits / 18bits)

(3)Smart remote control function

(4)Smart detect function

Page 29: YS Wong ,      KB Liu (Team Leader) 2011/06/16

National Synchrotron Radiation Research Center