YRM 2015 - JM ASHFAQUE

27
Semi-Realistic Non-Supersymmetric Heterotic String Vacua Johar M. Ashfaque University of Liverpool Johar M. Ashfaque YRM 2015, Oxford

Transcript of YRM 2015 - JM ASHFAQUE

Page 1: YRM 2015 - JM ASHFAQUE

Semi-Realistic Non-Supersymmetric HeteroticString Vacua

Johar M. Ashfaque

University of Liverpool

Johar M. Ashfaque YRM 2015, Oxford

Page 2: YRM 2015 - JM ASHFAQUE

The Fundamental Forces of Nature

Weak Nuclear Force

Strong Nuclear Force

Electromagnetism

Gravity

Johar M. Ashfaque YRM 2015, Oxford

Page 3: YRM 2015 - JM ASHFAQUE

Bosons & Fermions

Matter: Fermions

Interactions: Bosons

Johar M. Ashfaque YRM 2015, Oxford

Page 4: YRM 2015 - JM ASHFAQUE

Standard Model of Particle Physics

Johar M. Ashfaque YRM 2015, Oxford

Page 5: YRM 2015 - JM ASHFAQUE

Then Why String Theory?

Johar M. Ashfaque YRM 2015, Oxford

Page 6: YRM 2015 - JM ASHFAQUE

Then Why String Theory?

To incorporate GRAVITY with the Standard Model gaugegroup SU(3)× SU(2)× U(1).

Johar M. Ashfaque YRM 2015, Oxford

Page 7: YRM 2015 - JM ASHFAQUE

Why (Bosonic) String Theory Is Not The Complete Story?

Two major setbacks

The ground state of the spectrum always contains a tachyon.As a consequence, the vacuum is unstable.

Does not contain fermions. Where is the matter?

Johar M. Ashfaque YRM 2015, Oxford

Page 8: YRM 2015 - JM ASHFAQUE

Why (Bosonic) String Theory Is Not The Complete Story?

Two major setbacks

The ground state of the spectrum always contains a tachyon.As a consequence, the vacuum is unstable.

Does not contain fermions. Where is the matter?

Johar M. Ashfaque YRM 2015, Oxford

Page 9: YRM 2015 - JM ASHFAQUE

Why (Bosonic) String Theory Is Not The Complete Story?

Two major setbacks

The ground state of the spectrum always contains a tachyon.As a consequence, the vacuum is unstable.

Does not contain fermions. Where is the matter?

Johar M. Ashfaque YRM 2015, Oxford

Page 10: YRM 2015 - JM ASHFAQUE

Why Superstrings?

Supersymmetry is the symmetry that interchanges bosons andfermions.

Johar M. Ashfaque YRM 2015, Oxford

Page 11: YRM 2015 - JM ASHFAQUE

Superstring Theories

Johar M. Ashfaque YRM 2015, Oxford

Page 12: YRM 2015 - JM ASHFAQUE

Heterotic Strings

Heterotic strings are hybrid strings with either

left-moving sector being supersymmetric and right-movingsector being bosonic or

or vice versa

There are two heterotic string theories, one associated to thegauge group

E8 × E8

and the other toSO(32)

Johar M. Ashfaque YRM 2015, Oxford

Page 13: YRM 2015 - JM ASHFAQUE

Heterotic Strings

Heterotic strings are hybrid strings with either

left-moving sector being supersymmetric and right-movingsector being bosonic or

or vice versa

There are two heterotic string theories, one associated to thegauge group

E8 × E8

and the other toSO(32)

Johar M. Ashfaque YRM 2015, Oxford

Page 14: YRM 2015 - JM ASHFAQUE

The Basic Aim of Free Fermionic Construction

The Goal of the Free Fermionic Construction

4 Flat Space-Time Dimensions

N = 1 SUSY

3 generations of quarks and leptons

Johar M. Ashfaque YRM 2015, Oxford

Page 15: YRM 2015 - JM ASHFAQUE

Free-Fermionic Construction

The free-fermionic construction is based on the heterotic stringsand from here on, we will fix the left-moving sector to besupersymmetric and right-moving sector to be bosonic.

A torus has two non-contractible loops often referred to as the”toroidal” and ”poloidal” directions.

The left-moving and right-moving fermions acquire an integerphase when parallel transported along the two non-contractibleloops of the torus.

Johar M. Ashfaque YRM 2015, Oxford

Page 16: YRM 2015 - JM ASHFAQUE

The Free Fermionic Construction

A general boundary condition basis vector is of the form

α ={ψ1,2, χi , y i , ωi |y i , ωi , ψ

1,...,5, η1,2,3, φ

1,...,8}

where i = 1, ..., 6

ψ1,...,5

- SO(10) gauge group

φ1,...,8

- SO(16) gauge group

Johar M. Ashfaque YRM 2015, Oxford

Page 17: YRM 2015 - JM ASHFAQUE

Rules for Modular Invariance

The ABK Rules[Antoniadis,Bachas,Kounnas, 1987]

Johar M. Ashfaque YRM 2015, Oxford

Page 18: YRM 2015 - JM ASHFAQUE

The NAHE Set: A Toy Model

The NAHE set is the set of basis vectors

B = {1,S,b1,b2,b3}

where

1 = {ψ1,2µ , χ1,...,6, y1,...,6, ω1,...,6|y1,...,6, ω1,...,6, ψ1,...,5, η1,2,3, φ1,...,8},

S = {ψ1,2µ , χ1,...,6},

b1 = {ψ1,2µ , χ1,2, y3,...,6|y3,...,6, ψ1,...,5, η1},

b2 = {ψ1,2µ , χ3,4, y1,2, ω5,6|y1,2, ω5,6, ψ1,...,5, η2},

b3 = {ψ1,2µ , χ5,6, ω1,...,4|ω1,...,4, ψ1,...,5, η3}.

Johar M. Ashfaque YRM 2015, Oxford

Page 19: YRM 2015 - JM ASHFAQUE

Primarily

Seek string models which closely resemble the MSSM with

4D N = 1 theory

N = 1→ N = 0

with SM gauge group embedding

3 generations of quarks and leptons

minimum of 1 Higgs doublet pair

Johar M. Ashfaque YRM 2015, Oxford

Page 20: YRM 2015 - JM ASHFAQUE

Primarily

Seek string models which closely resemble the MSSM with

4D N = 1 theory

N = 1→ N = 0

with SM gauge group embedding

3 generations of quarks and leptons

minimum of 1 Higgs doublet pair

Johar M. Ashfaque YRM 2015, Oxford

Page 21: YRM 2015 - JM ASHFAQUE

Primarily

Seek string models which closely resemble the MSSM with

4D N = 1 theory

N = 1→ N = 0

with SM gauge group embedding

3 generations of quarks and leptons

minimum of 1 Higgs doublet pair

Johar M. Ashfaque YRM 2015, Oxford

Page 22: YRM 2015 - JM ASHFAQUE

Primarily

Seek string models which closely resemble the MSSM with

4D N = 1 theory

N = 1→ N = 0

with SM gauge group embedding

3 generations of quarks and leptons

minimum of 1 Higgs doublet pair

Johar M. Ashfaque YRM 2015, Oxford

Page 23: YRM 2015 - JM ASHFAQUE

Primarily

Seek string models which closely resemble the MSSM with

4D N = 1 theory

N = 1→ N = 0

with SM gauge group embedding

3 generations of quarks and leptons

minimum of 1 Higgs doublet pair

Johar M. Ashfaque YRM 2015, Oxford

Page 24: YRM 2015 - JM ASHFAQUE

An Explicit Non-Supersymmetric Tachyon-Free Model

1 = {ψµ, χ1,..,6, y1,...,6, ω1,...,6|y1,...,6, ω1,...,6, ψ1,...,5

, η1,2,3, φ1,...,8}

S = {ψµ, χ1,..,6}

b1 = {ψµ, χ1,2, y3,...,6|y3,...,6, ψ1,...,5

, η1}

b2 = {ψµ, χ3,4, y1,2, ω5,6|y1,2, ω5,6, ψ1,...,5

, η2}

b3 = {ψµ, χ5,6, ω1,...,4|ω1,...,4, ψ1,...,5

, η3}

α = {y1,...,6, ω1,...,6|ω1, y2, ω3, y4,5, ω6, ψ1,2,3

, φ1,...,4}

β = {y2, ω2, y4, ω4|y1,...,4, ω5, y6, ψ1,2,3

, φ1,...,4}

γ = {y1, ω1, y5, ω5|ω1,2, y3, ω4, y5,6, ψ1,2,3

= 12 ,

η1,2,3 = 12 , φ

2,...,7= 1

2}

Johar M. Ashfaque YRM 2015, Oxford

Page 25: YRM 2015 - JM ASHFAQUE

The Observable Sector: Left-Right Symmetric

SO(10)

α, β��

SO(6)× SO(4)

γ

��SU(3)C × U(1)C × SU(2)L × SU(2)R

Johar M. Ashfaque YRM 2015, Oxford

Page 26: YRM 2015 - JM ASHFAQUE

The Hidden Sector

SO(16)

α, β��

SO(8)× SO(8)

γ

��U(1)× SU(3)H1 × U(1)H1 × SU(3)H2 × U(1)H2 × U(1)

Johar M. Ashfaque YRM 2015, Oxford

Page 27: YRM 2015 - JM ASHFAQUE

THANK YOU!!!

Johar M. Ashfaque YRM 2015, Oxford