Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any...

46
1 P36 - Class 36: Outline Hour 1: Concept Review / Overview PRS Questions – Possible Exam Questions Hour 2: Sample Exam Yell if you have any questions

Transcript of Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any...

Page 1: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

1P36 -

Class 36: Outline

Hour 1:Concept Review / OverviewPRS Questions – Possible Exam Questions

Hour 2:Sample Exam

Yell if you have any questions

Page 2: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

2P36 -

Before Starting…

All of your grades should now be posted (with possible exception of last problem set). If this is not the case contact me immediately.

Page 3: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

3P36 -

Final Exam TopicsMaxwell’s Equations:1. Gauss’s Law (and “Magnetic Gauss’s Law”)

2. Faraday’s Law 3. Ampere’s Law (with Displacement Current)

& Biot-Savart & Magnetic moments

Electric and Magnetic Fields:1. Have associated potentials (you only know E)2. Exert a force3. Move as waves (that can interfere & diffract)4. Contain and transport energyCircuit Elements: Inductors, Capacitors, Resistors

Page 4: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

4P36 -

Test Format

Six Total “Questions”One with 10 Multiple Choice QuestionsFive Analytic Questions

1/3 Questions on New Material2/3 Questions on Old Material

Page 5: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

5P36 -

Maxwell’s Equations

Page 6: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

6P36 -

Maxwell’s Equations

0

0 0 0

(Gauss's Law)

(Faraday's Law)

0 (Magnetic Gauss's Law)

(Ampere-Maxwell Law)

in

S

B

C

S

Eenc

C

Qd

dddt

d

dd Idt

ε

µ µ ε

⋅ =

Φ⋅ = −

⋅ =

Φ⋅ = +

∫∫

∫∫

E A

E s

B A

B s

Page 7: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

7P36 -

Gauss’s Law:0S

inqdε

⋅ =∫∫ E A

SphericalSymmetry

Cylindrical Symmetry

Planar Symmetry

Page 8: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

2P36 -

Maxwell’s Equations

0

0 0 0

(Gauss's Law)

(Faraday's Law)

0 (Magnetic Gauss's Law)

(Ampere-Maxwell Law)

in

S

B

C

S

Eenc

C

Qd

dd

dt

d

dd I

dt

E A

E s

B A

B s

Page 9: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

9P36 -

Faraday’s Law of Induction

( )cos

Bdd NdtdN BAdt

θ

ε Φ= ⋅ = −

= −

∫ E s

Induced EMF is in direction that opposes thechange in flux that caused it

Lenz’s Law:Ramp B Rotate area

in field

Moving bar, entering field

Page 10: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

3P36 -

Maxwell’s Equations

0

0 0 0

(Gauss's Law)

(Faraday's Law)

0 (Magnetic Gauss's Law)

(Ampere-Maxwell Law)

in

S

B

C

S

Eenc

C

Qd

dd

dt

d

dd I

dt

E A

E s

B A

B s

Page 11: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

11P36 -

=2 Current Sheets

Ampere’s Law: .∫ =⋅ encId 0µsB

IB

B

X XX

X

X

XX

X

XXX

X

X

XX

X

XXXXXXXXXXXX

B

LongCircular

Symmetry(Infinite) Current Sheet

Solenoid

Torus/Coax

Page 12: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

12P36 -

Displacement Current

0E

dddQ I

dt dtε Φ= ≡

0 00

EQE Q EAA

ε εε

= ⇒ = = Φ

0

0 0 0

( )encl dC

Eencl

d I I

dIdt

µ

µ µ ε

⋅ = +

Φ= +

∫ B sCapacitors, EM Waves

Page 13: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

4P36 -

Maxwell’s Equations

0

0 0 0

(Gauss's Law)

(Faraday's Law)

0 (Magnetic Gauss's Law)

(Ampere-Maxwell Law)

in

S

B

C

S

Eenc

C

Qd

dd

dt

d

dd I

dt

E A

E s

B A

B s

I am nearly certain that you will have one of each

They are very standard – know how to do them all

Page 14: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

14P36 -

EM Field Details…

Page 15: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

15P36 -

Electric PotentialB

B AA

V d V V

Ed

∆ = − ⋅ = −

= −

∫E s

ˆe.g. dVVdx

= −∇ = −E i

(if E constant – e.g. Parallel Plate C)

Common second step to Gauss’ Law

Less Common – Give plot of V, ask for E

Page 16: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

16P36 -

( )Lorentz Force:

q= + ×F E v B

Force

( )Magnetic Force:

B Bd Id I= × ⇒ = ×F s B F L B

• Single Charge Motion • Cyclotron Motion• Cross E & B for no force

• Parallel Currents Attract • Force on Moving Bar (w/ Faraday)

Page 17: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

17P36 -

The Biot-Savart LawCurrent element of length ds carrying current I (or equivalently charge q with velocity v) produces a magnetic field:

20 ˆ

4 rdI rsBd ×=

πµ

2

ˆx4o q

rµπ

= v rB

Page 18: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

18P36 -

Magnetic Dipole MomentsAnµ IIA ≡≡ ˆ

Generate:

Feel:1) Torque aligns with external field2) Forces as for bar magnets

= ×τ µ B

Page 19: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

19P36 -

Traveling Sine Wave

0ˆ sin( )E kx tω= −E EWavelength:

Frequency : 2Wave Number:

Angular Frequency: 21 2Period:

Speed of Propagation:

Direction of Propagation:

f

k

f

Tf

v fkx

λ

πλω π

πω

ω λ

=

=

= =

= =

+

ii

i

i

i

i

i

Good chance this will be one question!

Page 20: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

20P36 -

EM Waves

8

0 0

1 3 10 mv csµ ε

= = = ×

0

0

EE cB B

= =

Travel (through vacuum) with speed of light

At every point in the wave and any instant of time, E and B are in phase with one another, with

E and B fields perpendicular to one another, and to the direction of propagation (they are transverse):

Direction of propagation = Direction of ×E B

Page 21: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

21P36 -

Interference (& Diffraction)

( )12

Constructive InterferenceDestructive Interference

L mL m

λλ

∆ = ⇒

∆ = + ⇒

sind mθ λ=sina mθ λ=

Likely multiple choice problem?

m=1m=2

m=0

m=3

Page 22: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

22P36 -

Energy Storage

: Magnetic Energy Density

2

2o

EEu ε= : Electric Energy Density

Energy is stored in E & B Fields

2

2Bo

Buµ

=

In capacitor: In EM Wave

In inductor: In EM Wave

212LU L I=

212CU CV=

Page 23: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

23P36 -

Energy Flow

0µ×= E BSPoynting vector:

2 20 0 0 0

0 0 0

Intensity:2 2 2E B E cBI S

cµ µ µ≡< > = = =

For EM Radiation

• (Dis)charging C, L• Resistor (always in)• EM Radiation

Page 24: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

24P36 -

CircuitsThere will be no quantitative circuit questions on the final and no questions regarding driven RLC Circuits

Only in the multiple choice will there be circuit type questions

BUT….

Page 25: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

25P36 -

Inductor

Capacitor

Resistor

Power / EnergyV / εValueNAME

Circuit Elements

NLIΦ= dIL

dt−

QCV

=∆

QC

IRRA

ρ= 2I R

212CV

212 LI

Page 26: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

26P36 -

Circuits

RC & RL Circuits have “charging” and “discharging” curves that go exponentially with a time constant:

LC & RLC Circuits oscillate:

01, , cos( )V Q I tLC

ω ω∝ =

For “what happens just after switch is thrown”:Capacitor: Uncharged is short, charged is openInductor: Current doesn’t change instantly!

Initially looks like open, steady state is short

Page 27: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

27P36 -

SAMPLE EXAM

Page 28: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

28P36 -

Problem 1: Gauss’s LawA circular capacitor of spacing d and radius R is in a circuit carrying the steady current i shown.

At time t=0 it is uncharged

1. Find the electric field E(t) at P vs. time t (mag. & dir.)2. Find the potential at P, V(t), given that the potential at

the right hand plate is fixed at 03. Find the magnetic field B(t) at P4. Find the total field energy between the plates U(t)

F2002 #5, S2003 #3, SFB#1, SFC#1, SFD#1

Page 29: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

29P36 -

Solution 1: Gauss’s Law1.Find the electric field E(t):Assume a charge q on the left plate (-q on the right)

Gauss’s Law:

0 0

in

S

Q Ad EA σε ε

⋅ = = =∫∫ E A

20 0

qER

σε π ε

= = Since q(t=0) = 0, q = it

20

( ) to the rightittRπ ε

=E

Page 30: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

30P36 -

Solution 1.2: Gauss’s Law2.Find the potential V(t):

Since the E field is uniform, V = E * distance

( ) ( )20

( ) ( ) ' 'itV t t d d d dRπ ε

= − = −E

Check: This should be positive since its between a positive plate (left) and zero potential (right)

Page 31: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

31P36 -

Solution 1.3: Gauss’s Law3.Find B(t):

Ampere’s Law:

22

0E

itEA rR

ππ ε⎛ ⎞

Φ = = ⎜ ⎟⎝ ⎠

02( ) out of the page

2irtR

µπ

=B

0 0 0E

encC

dd Idt

µ µ ε Φ⋅ = +∫ B s

2

20

Ed r idt R εΦ =

2

0 0 20

2 0 r irBR

π µ εε

= +

Page 32: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

32P36 -

Solution 1.4: Gauss’s Law4. Find Total Field Energy between the plates

E Field Energy Density:22

202 2

o oE

E ituR

ε επ ε⎛ ⎞

= = ⎜ ⎟⎝ ⎠

220

2

12 2 2B

o o

irBuR

µµ µ π

⎛ ⎞= = ⎜ ⎟⎝ ⎠

B Field Energy Density:

( )Total Energy E BU u u dV= +∫∫∫2 2

2 202 2

0

1 22 2 2o

o

iit R d r d r drR R

ε µπ ππ ε µ π⎛ ⎞ ⎛ ⎞= + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠∫i i

(Integrate over cylinder)

( )22

20

12 2 8

oit dd iR

µε π π

= +2

212 2q LiC

⎛ ⎞= +⎜ ⎟⎝ ⎠

Page 33: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

33P36 -

Problem 2: Faraday’s Law

A simple electric generator rotates with frequency fabout the y-axis in a uniform B field. The rotor consists of n windings of area S. It powers a lightbulb of resistance R (all other wires have no resistance).

1. What is the maximum value Imax of the induced current? What is the orientation of the coil when this current is achieved?2. What power must be supplied to maintain the rotation (ignoring friction)?

Page 34: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

34P36 -

Solution 2: Faraday’s Law

Faraday's Law: B

C

dddtΦ⋅ = −∫ E s

( )( ) ( )1 1 cos sinBd d nBSI nBS t tR R dt R dt Rε ω ω ωΦ= = − = − =

max 2nBS nBSI fR R

ω π= =Max when flux is changing the most – at 90º to current picture

Page 35: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

35P36 -

Solution 2.2: Faraday’s Law

( ) ( )2 2

2 22 sin 2 sinnBS nBSP I R f t R R f tR R

π ω π ω⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2. Power delivered?

2

22R nBSP f

Rπ⎛ ⎞= ⎜ ⎟

⎝ ⎠

Power delivered must equal power dissipated!

Page 36: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

36P36 -

Problem 3: Ampere’s Law

Xd

d

d

Consider the two long current sheets at left, each carrying a current density J0(out the top, in the bottom)L

J0

J0

a) Use Ampere’s law to find the magnetic field for all z. Make sure that you show your choice of Amperian loop for each region.

At t=0 the current starts decreasing: J(t)=J0 – atb) Calculate the electric field (magnitude and direction)

at the bottom of the top sheet.c) Calculate the Poynting vector at the same location

z

Page 37: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

37P36 -

Solution 3.1: Ampere’s Law

Xd

d

d

J0

J0

z

By symmetry, above the top and below the bottom the B field must be 0.Elsewhere B is to rightz=0

123

Region 1:

0 0 0 0 0encd I B J z B J zµ µ µ⋅ = ⇒ = ⇒ =∫ B s

Region 2:

0 0 0 0 0encd I B J d B J dµ µ µ⋅ = ⇒ = ⇒ =∫ B s

Region 3:( )( ) ( )0 0 0 0 02 3B J d J z d B J d zµ µ= − − ⇒ = −

Page 38: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

38P36 -

Solution 3.2: Ampere’s Law

Xd

d

d

Why is there an electric field?J

J

z

Changing magnetic field Faraday’s Law!

B

C

dddtΦ⋅ = −∫ E s Use rectangle of sides d, s to

find E at bottom of top plate

J is decreasing B to right is decreasing induced field wants to make B to right E out of page

( ) ( ) 20 0

2102

2

out of page

d d dJsE Bsd sd dJ sddt dt dtd a

µ µ

µ

= = =

⇒ =E

s

Page 39: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

39P36 -

Solution 3.3: Ampere’s Law

Xd

d

d

RecallJ

J

z

Calculate the Poynting vector (at bottom of top plate):

2104 out of paged aµ=EBE

0 to the rightJdµ=B

( )( )210 04

0 0

1 1 ˆd a Jdµ µµ µ

= × =S E B z

That is, energy is leaving the system (discharging)If this were a solenoid I would have you integrate over the outer edge and show that this = d/dt(1/2 LI2)

Page 40: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

40P36 -

Problem 4: EM WaveThe magnetic field of a plane EM wave is:

(a) In what direction does the wave travel?(b) What is the wavelength, frequency & speed of the wave?(c) Write the complete vector expression for E(d) What is the time-average energy flux carried in the wave?

What is the direction of energy flow? (µo = 4 π x l0-7 in SI units; retain fractions and the factor π in your answer.)

( ) ( )( )9 -1 8 -1 ˆ10 cos m 3 10 s Teslay tπ π−= + ×B i

Page 41: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

41P36 -

Solution 4.1: EM Wave

ˆ(a) Travels in the - direction (-y)j-1 2(b) m 2mk

kππ λ= ⇒ = =

( ) ( )( )9 -1 8 -1 ˆ10 cos m 3 10 s Teslay tπ π−= + ×B i

( ) ( )( )1 -1 8 -1 ˆ3 10 cos m 3 10 s V/my tπ π−= − × + ×E k(c)

8 -1 8 -13=3 10 s 10 s2 2

f ωω ππ

× ⇒ = = ×

8 m3 10s

v fkω λ= = = ×

Page 42: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

42P36 -

Solution 4.2: EM Wave

( )( )

0

0 00

1 97 2

1(d)

1 121 1 W3 10 102 4 10 m s

E B

µ

µ

π− −

= ×

=

⎛ ⎞= ×⎜ ⎟×⎝ ⎠

S E B

( ) ( )( )9 -1 8 -1 ˆ10 cos m 3 10 s Teslay tπ π−= + ×B i

S points along direction of travel: ˆ- j

Page 43: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

5P36 -

Problem 5: InterferenceIn an experiment you shine red laser light ( =600 nm)

at a slide and see the following pattern on a screen

placed 1 m away:

a) Are you looking at a single slit or at two slits?

b) What are the relevant lengths (width, separation if

2 slits)? What is the orientation of the slits?

You measure the distance between successive

fringes to be 20 mm

Page 44: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

6P36 -

Solution 5.1: Interference

First translate the picture to a plot:

(a) Must be two slits

a

d

-80 -60 -40 -20 0 20 40 60 80

Inte

nsity

Horizontal Location on Screen (mm)

Page 45: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

45P36 -

Solution 5.2: Interferencetan sin my L L L

dλθ θ= ≈ =

( ) ( )( )( )

( ) ( )( )

75

2

1 6001

20

6 101 3 10

2 10

md Lyλ

−−

= =

×= = ×

×

nmm

mm

m m

( )( )

sin 1

sin 3

a

d

θ λθ λ

=

=5

13

10

ad

a −

⇒ =

= m

-80 -60 -40 -20 0 20 40 60 80

Inte

nsity

Horizontal Location on Screen (mm)

At 60 mm…

Page 46: Yell if you have any questions - MIT OpenCourseWare · 2020-04-23 · Yell if you have any questions. P36 - 2 ... & Biot-Savart & Magnetic moments Electric and Magnetic Fields: 1.

46P36 -

Why is the sky blue?

400 nm 700 nmWavelength

Small particles preferentially scatter small wavelengths

You also might have seen a red moon last fall –during the lunar eclipse.When totally eclipsed by the Earth the only light illuminating the moon is diffracted by Earth’s atmosphere