X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches...

25
X-Ray interactions With Superheavy Atoms Pavlo Baranov Queens College Advisor: John Rehr August 18 th , 2016 1

Transcript of X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches...

Page 1: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

X-Ray interactions With Superheavy Atoms

Pavlo Baranov

Queens College

Advisor: John Rehr

August 18th, 2016

1

Page 2: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Table of Contents

• Introduction

• XAFS Theory

• Project 1: XANES of element Z = 130

• Thomson Scattering Cross Section & Thomas-Fermi model

• Project 2: Thomas-Fermi model to predict densities

• Future Work

2

Page 3: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

3

Page 4: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Superheavy Elements

Start from Z = 104

Have very short half-lives

Made artificially

Created in a particle accelerator

4

Particle Accelerator, https://upload.wikimedia.org/wikipedia/commons/5/5f/2mv_accelerator-MJC01.jpg

Page 5: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

5

Extended Periodic Table, https://sciencepicks.files.wordpress.com/2011/12/extended-periodic-table.png

Page 6: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

6

Page 7: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Island of Stability

• The idea that heavy elements near the isotope 300𝑈𝑏𝑛 (element 120) with near the magic number of protons and neutrons will be much more stable.

7Island of Stability, https://upload.wikimedia.org/wikipedia/commons/7/7b/Island_of_Stability_derived_from_Zagrebaev.png

Page 8: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

8

Page 9: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

XAFS – X-Ray Absorption Fine Structure

• XAFS tells us how x-rays are absorbed by a system of atoms, including free atoms, molecules and solids at energies around the core-level binding energies of the atom.

• XAFS depends on the atomic structure and electronic and vibrational properties of the material; therefore, XAFS can be calculated for every element on the periodic table.

• XAFS can be used to characterize materials, including atomic and electronic structure.

• Absorption coefficient µ, 𝐼 = 𝐼0𝑒−µ𝑡 Beer’s Law.

• µ ∝ 𝑓 𝑖 𝑑 𝑓2δ(𝐸𝑓 − 𝐸𝑖 − ℏω) - Fermi’s Golden Rule.

9

Page 10: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

10

Fermi Level

Photoelectric Effect

Page 11: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

EXAFS – Extended X-Ray Absorption Fine Structure

• Edges are the sharp rises in absorption at certain energies. They occur at roughly the binding energy of each core-level electron.

• EXAFS is what is happening well above the edges.

• EXAFS Equation

χ 𝑘 =

𝑗

𝑁𝑗𝑓𝑗(𝑘)𝑒−2𝑘2σ𝑗

2

𝑘𝑅𝑗2 sin[2𝑘𝑅𝑗 + σ𝑗(𝑘)]

11

Page 12: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

XANES – X-Ray Absorption Near Edge Structure

• XANES is typically within 30 eV of the main absorption edge.

• XANES can be used as a fingerprint to identify the presence of a particular chemical species.

12XANES and EXAFS, http://www.ati.ac.at/typo3temp/pics/617d72ef66.png

Page 13: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

FEFF9

13

FEFF9, http://www.feffproject.org/feffproject-feff.html

Page 14: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Uranium Dioxide 𝑈𝑂2

14

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

17140 17150 17160 17170 17180 17190 17200 17210 17220 17230 17240

mu

omega

UO2 L3 Edge XANES

E. A. Hudson, J. J. Rehr, J. J. Bucher, Multiple-scattering calculations of the uranium L3-edge x-ray-absorption near-edge structure, Physical Review B, 1995

Page 15: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Erbium Oxide 𝐸𝑟2𝑂3

15

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

8350 8355 8360 8365 8370 8375 8380

mu

omega

Er2O3 L3 Edge XANES

Hiroyuki Asakura, Tetsuya Shishido, Kentaro Teramura, and Tsunehiro Tanaka, Local Structure and L1- and L3-Edge X-ray Absorption Near Edge Structure of Late Lanthanide Elements (Ho, Er, Yb) in Their Complex Oxides, J. Phys. Chem. C 2015, 119, 8070−8077

Page 16: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Americium Dioxide Am𝑂2

16

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

18500 18510 18520 18530 18540 18550 18560 18570

mu

omega

AmO2 L3 Edge XANES

Tsuyoshi Nishi, Masami Nakada, Akinori Itoh, Chikashi Suzuki, Masaru Hirata, Mitsuo Akabori, EXAFS and XANES Studies of Americium Dioxide with fluorite structure, J. Of Nuclear Materials, 2007

Page 17: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

XANES of Untrinilium (Utn2)

17

Page 18: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

18

Page 19: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Thomson Scattering

• The elastic scattering of X-rays from free electrons.

• The atomic scattering factor

• Momentum transfer

19

Thomson Scattering, https://upload.wikimedia.org/wikipedia/commons/b/bf/Thomson_scattering_geometry.png

𝑓0 =

𝑛=1

𝑍

0

4π𝑟2ρ𝑛(𝑟)sin(𝑞𝑟)

𝑞𝑟𝑑𝑟

𝑞 =4πsin(θ𝐵)

λ

Page 20: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Thomas Fermi model

• 𝑛 =[2(φ−φ0)]

3/2

3π2

• 𝑟 = 𝑥𝑏𝑍−1/3, 𝑏 = 0.885

• φ 𝑟 =𝑍4/3

𝑏

χ(𝑥)

𝑥

• Thomas Fermi equation 𝑥1/2𝑑2χ

𝑑𝑥2= χ3/2

• TF density 𝑛 𝑟 = 𝑍2𝑓(𝑟𝑍1/3

𝑏), 𝑓 𝑥 =

32

9π3(χ

𝑥)3/2

20

Page 21: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

21

Page 22: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

22

Page 23: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Future Work

• Calculation of phase shifts using FEFF9

• Comparison to WKB approximation

• Developing a model to calculate radii for superheavy molecules.

23

Page 24: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Acknowledgments

Thank you to professor John Rehr, Joshua Kas, and Fernando Vila for their guidance through my projects.

Thank you to Ron Musgrave for the machine shop lessons.

Thank you to REU coordinators and the NSF.

24

Page 25: X-Ray interactions With Superheavy AtomsReferences J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

References

J. J. Rehr, R. C. Albers, Theoretical Approaches to X-ray Absorption Fine Structure, Reviews of Modern Physics, Vol. 72, No. 3, 2000

Pekka Pyykko, A suggested Periodic Table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions, Phys. Chem. Chem. Phys., 2011,13, 161-168

Hiroyuki Asakura, Tetsuya Shishido, Kentaro Teramura, and Tsunehiro Tanaka, Local Structure and L1- and L3-Edge X-ray Absorption Near Edge Structure of Late Lanthanide Elements (Ho, Er, Yb) in Their Complex Oxides, J. Phys. Chem. C 2015, 119, 8070−8077

Tsuyoshi Nishi, Masami Nakada, Akinori Itoh, Chikashi Suzuki, Masaru Hirata, Mitsuo Akabori, EXAFS and XANES Studies of Americium Dioxide with fluorite structure, J. Of Nuclear Materials, 2007

E. A. Hudson, J. J. Rehr, J. J. Bucher, Multiple-scattering calculations of the uranium L3-edge x-ray-absorption near-edge structure, Physical Review B, 1995

Matthew Newville, Fundamentals of XAFS, Consortium for Advanced Radiation Sources, 2004

J. Kas, Theory and Calculation of X-Ray Absorption, https://www.bnl.gov/ps/nsls/workshops/2006/exafs/talks/Kas.pdf, 2006

V. L. Eletskii, V.S. Popov, The Thomas-Fermi method for Z>137, Zh. Eksp. Teor. Fiz. 73, 2046-2059, 1977

A. Messiah, Quantum Mechanics, Dover Publications Inc., Mineola, New York, 1999

L. D. Landau, E. M. Lifshitz, Quantum Mechanics, non-relativistic theory, Pergamon Press, Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto, 1977

Gwyndaf Evans, Classical X-ray scattering, http://www.gwyndafevans.co.uk/thesis-html/node11.html, 1994

Ray Wong, Josh Alamillo, EXAFS: Theory, http://chem.libretexts.org/Core/Physical_Chemistry/Spectroscopy/X-ray_Spectroscopy/EXAFS%3A_Theory, 2016

25