x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e...

21
x-Array Aperture Configuration in Planar or Non-Planar Spacecraft Formation for DARWIN/TPF-I Candidate Architectures Oswald Wallner, Klaus Ergenzinger, Reinhold Flatscher, Ulrich Johann Astrium GmbH San Diego, August 30, 2007

Transcript of x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e...

Page 1: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

x-Array Aperture Configuration in Planar or Non-Planar Spacecraft Formation for DARWIN/TPF-I Candidate Architectures Oswald Wallner, Klaus Ergenzinger, Reinhold Flatscher, Ulrich Johann Astrium GmbH San Diego, August 30, 2007

Page 2: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Introduction – DARWIN/TPF-I Mission Goals

- 2 -

• Detection of terrestrial planets within the habitable zones of nearby stars

• Characterization of the detected Earth-like exo-planets

o physical parameters

o presence of an atmosphere (signs of biological activity)

• Aperture synthesis imaging for general astrophysics

© ESA

Page 3: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Introduction – DARWIN/TPF-I Mission

- 3 -

• Space-borne nulling interferometer

• Operational orbit at L2

• Operates in the mid-infrared wavelength regime from 6.5 to 20 micrometers

• Instrument is distributed over 5 spacecraft which fly in a closely-controlled formation

• Baselines are adjustable up to several hundred meters

Page 4: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Outline

- 4 -

Aperture configuration

• x-Array

Spacecraft formation

• Planar formations

• Non-planar formations

Critical items and design drivers

Page 5: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

DARWIN/TPF-I Instrument Implementation

- 5 -

Instrument implementation is determined by

• Aperture configuration

• Spacecraft formation

Aperture configuration

• Arrangement of the collector spacecraft relative to each other

• Defines the angular selectivity of the interferometer

• Determines the theoretical performance

• x-Array is a highly optimum aperture configuration

Spacecraft formation

• Arrangement of the beam combiner spacecraft relative to the collector spacecraft

• Independent of the aperture configuration

• Planar (in plane) formations and non-planar (out of plane) formations

Wallner et.al., “DARWIN mission and configuration trade-off”, Proc. SPIE 6268 (2006)

Page 6: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

x-Array Aperture Configuration – Principle of Operation

- 6 -

Page 7: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

x-Array Aperture Configuration – Interferometer Core

- 7 -

Page 8: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

x-Array Aperture Configuration – Key Features

- 8 -

Decoupling of nulling and imaging properties

• Instrument implemented as cascaded two-telescope nullers

• Short nulling baseline for strong rejection of the on-axis star

• Long imaging baseline for high angular resolution

Perfectly symmetric and extremely efficient instrument implementation

• Perfect symmetry (polarisation, optical path length, transmission)

• Perfectly efficient co-axial beam recombination (100% efficiency)

• Periscope achromatic phase shifters for nulling (π)

• Phase chopping phase shifters (±π/2) with relaxed requirements

Page 9: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Spacecraft Formations

- 9 -

Planar spacecraft formations Non-planar spacecraft formations (“EMMA”)

© Astrium GmbH © JPL/MPIA

• All spacecraft form a virtually stiff truss

• Sky access: 71%

• Spacecraft do not form a virtually stiff truss (collector spacecraft rotate around beam combiner spacecraft)

• Sky access: 95%

• Simpler scientific instrument

⇒ Instrument drives the spacecraft design

• Simpler spacecraft

⇒ Spacecraft drives the instrument design!

Page 10: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Planar Spacecraft Formations – Formation Flying

- 10 -

• All spacecraft form a virtual stiff truss

⇒ Spacecraft formation rotates around common line of sight

• Fixed geometry for beam relay and inter-spacecraft metrology

• Simplified acquisition procedure at small baseline

• On ground verification feasible

Page 11: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Planar Spacecraft Formations – Science Payload

- 11 -

Page 12: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Planar Spacecraft Formations – Symmetric Beam Routing

- 12 -

Page 13: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Planar Spacecraft Formations – Critical Issues

- 13 -

• Size of spacecraft stack not compatible with today launchers (Ariane 5, Delta IV Heavy)

Launcher constraints on science payload

• Receive telescopes with deployable secondary mirror assembly

• Deployment and alignment mechanism

• Once after launch (potentially recalibration)

Launcher constraints on spacecraft

• Deployable sunshields

• Complexity driven by the telescope size

• Heritage from JWST and GAIA

Page 14: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Non-Planar Spacecraft Formations – Formation Flying

- 14 -

• Spacecraft do not form a virtual truss

⇒ Beam combiner spacecraft has fixed orientation relative to Sun

⇒ Collector spacecraft rotate around common line of sight

⇒ Collector spacecraft tumble

• Variable geometry for beam relay and inter-spacecraft metrology

⇒ Tracking for science and metrology beams

• Acquisition critical

• On ground verification not possible

Page 15: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Non-Planar Spacecraft Formations – Science Payload

- 15 -

Alternatives:

Page 16: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Non-Planar Spacecraft Formations – Receive Optics

- 16 -

Page 17: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Non-Planar Spacecraft Formations – Critical Issues

- 17 -

Formation flying mode

• Acquisition critical

• High performance star trackers (á 1 arcsec stability)

• Synchronous tracking of laser metrology beams

• On ground verification not feasible

Science mode

• Rotation of collector spacecraft relative to the beam combiner spacecraft

• Synchronous tracking of science beams and metrology beams

• Active science beam actuators (tracking, derotation, wavefront correction)

• Perturbations at rotation frequency due to residual control errors

Page 18: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Spacecraft Formations – Key Issues and Design Drivers

- 18 -

Planar spacecraft formations

© Astrium GmbH

Non-planar spacecraft formations

© JPL/MPIA Beam symmetry • perfectly polarisation symmetric • inherently polarisation asymmetric

Science beam actuators • OPD, fine pointing • OPD, fine-pointing • synchronous beam tracking • synchronous active wavefront correction

Receive optics • secondary mirror deployment • ground testing possible

• mirrors with ≈ 2 km curvature radius • no ground testing possible

Formation flying • virtually rigid instrument • on-ground verification possible

• metrology acquisition critical • synchronous metrology beam tracking • on-ground verification not possible

Imaging mode • dual feed imaging for faint objects possible

• only for bright objects

Spacecraft design • deployable sunshields required • equal solar pressure on all

spacecraft

• fixed sunshields • different solar presser on spacecraft

Page 19: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Conclusions – Aperture Configuration

- 19 -

x-Array represents a highly optimum aperture configuration

• Decoupling of nulling and imaging properties

• Perfectly symmetric and extremely efficient implementation by cascaded two-telescope nullers

⇒ Instrumental and observational advantages

⇒ Outstanding scientific performance

0 0.5 1 1.5 2B-V ê mag

12

10

8

6

4

edutingam

non-planarbothplanar

0 60 120 180 240 300 360ecliptic longitude ê deg

-90

-60

-30

0

30

60

90

citpilceedutitalê

ged

non-planarbothplanar

Page 20: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Conclusions – Spacecraft Formation

- 20 -

Planar formations

• Allow for an optimum scientific instrument at the cost of a complex spacecraft

• Suffer from the reliability of the deployment mechanisms

Non-planar formations

• Simplify the spacecraft but require beam tracking and active wavefront correction synchronous to array rotation

• Suffer from accuracy and reliability of science beam actuators

• Suffer from synchronous instrumental errors

Page 21: x-Array Aperture Configurations in Planar or Non-Planar ... · 0 0.5 1 1.5 2 B-Vêmag 12 10 8 6 4 e du ti ng a m non-planar both planar 0 60 120 180 240 300 360 ecliptic longitude

Future Missions and Systems

Conclusions

- 21 -

Development of key technologies and subsystems required

• Deployable sunshield and secondary mirror assembly for planar formations

• Receive mirror and synchronous tracking and wavefront correction optics for non-planar formations

Status of analysis

• Formation flying, opto-dynamics, science performance

• Different level for planar and non-planar formation