WS7_Solutions.pdf

download WS7_Solutions.pdf

of 4

Transcript of WS7_Solutions.pdf

  • 8/10/2019 WS7_Solutions.pdf

    1/4

    MATH 203 - Summer 2014

    Instructor: Patrick Collins

    Worksheet 7

    #1

    Evaluate the following indefinite integrals.

    (a) x lnxdx(b) x3 x2 x cosxdx(c)

    x2 sin

    2x

    dx

    (d) x3 e3x dxSolution

    (a) Integration by parts with u lnxand dv x dxgives du 1x

    dxand v x2

    2. Thus,

    x lnxdx x22

    lnx 12x dx

    x2

    2lnx x2

    4 C.

    (b) Integration by parts with u x3 x2 xand dv cosxdxgives du 3x2 2x 1dxand v sinx. Thus,x3 x2 x cosxdx x3 x2 x sinx 3x2 2x 1 sinxdx.

    For the new integral, integration by parts with u 3x2 2x 1 and dv sinxdx gives du 6x 2dx andv cosx. Thus we obtain

    x3 x2 x sinx 3x2 2x 1 cosx 6x 2 cosxdx x3 x2 x sinx 3x2 2x 1 cosx 6x 2 cosxdx.

    For the new integral, integrationby parts with u 6x 2 and dv cosxdxgives du 6 dxand v sinx. Thus weobtain

    x3 x2 x cosx dx x3 x2 x sinx 3x2 2x 1 cosx 6x 2 sinx 6 sinxdx x3 x2 x sinx 3x2 2x 1 cosx 6x 2 sinx 6 cosx C.

    (c) Integration by parts with u x2and dv sin2xdxgives du 2x dxand v 12

    cos2x. Thus,x2 sin2xdx 12 x2 cos2x x cos2xdx.

    For the new integral, integration by parts with u xand dv cos2xdxgives du dxand v 12

    sin2x. Thus weobtain

    x2 sin2xdx 12

    x2 cos2x 12

    x sin2x 12sin2xdx

    1

    2x2 cos2x 1

    2 x sin2x 1

    4cos2x C.

  • 8/10/2019 WS7_Solutions.pdf

    2/4

    (d) Integration by parts with u x3and dv e3x dxgives du 3x2 dxand v 1

    3e3x. Thus,

    x3 e3x dx 13

    x3 e3x x2 e3x dx.For the new integral, integration by parts with u x2and dv e3x dxgives du 2x dxand v

    1

    3e3x. Thus,

    x3

    e3x

    dx 1

    3 x3

    e3x

    1

    3 x2

    e3x

    2

    3x e3x

    dx.For the new integral, integration by parts with u xand dv e3x dxgives du dxand v

    1

    3e3x. Thus,

    x3 e3x dx 13

    x3 e3x 1

    3 x2 e3x

    2

    3 1

    3 x e3x

    1

    3e3x

    1

    3x3 e3x

    1

    3 x2 e3x

    2

    9 x e3x

    2

    18e3x C.

    #2

    Evaluate the following definite integrals.

    (a) 1

    2

    x ex dx

    (b) 0

    x2 cos2xdx

    (c) 1

    2

    x e6x dx

    Solution

    (a) Integration by parts with u xand dv ex dxgives du dxand v ex. Thus,

    1

    2

    x ex dx x ex12 1

    2

    ex dx

    2 e2 e1 ex12 2 e2 e1 e2 e1 3 e2 2 e1.

    (b) Integration by parts with u x2and dv cos2xdxgives du 2x dxand v 12

    sin2x. Thus,

    0

    x2 cos2xdx 12

    x2 sin2x0

    0

    x sin2xdx

    1

    22 sin2 1

    202 sin0

    0

    x sin2xdx

    0

    x sin2xdx.

    Integration by parts with u xand dv sin2xdxgives du dxand v 12 cos2x. Thus,

    0

    x2 cos2xdx 12

    x cos2x0

    1

    20

    cos2xdx

    12

    cos2 120 cos0 1

    2 1

    2sin2x

    0

    1

    2

    1

    2 1

    2sin2 1

    2sin0

    2.

    2 WS7_Solutions.nb

  • 8/10/2019 WS7_Solutions.pdf

    3/4

  • 8/10/2019 WS7_Solutions.pdf

    4/4

    dy

    dx

    x y3

    x21

    1y3

    dy xx21

    dx

    y2

    2

    x2 1 C

    y2 2 x2 1 C

    y 2 x2 1 C12

    .

    #4

    Solve the following initial value problems.

    (a)dr

    d

    r2

    , r1 2

    (b)dy

    dx eyx secy 1 x2, y0 0

    (c) x

    dy

    dx

    2 y

    4, y1

    5.

    Solution

    (a) The general solution:

    dr

    d

    r2

    1r2

    dr 1

    d

    1

    r ln C.

    Using the initial value condition to solve for Cgives

    1

    2 ln1 C C,

    and so our particular solution is

    1

    r ln 1

    2

    1

    r

    1

    2 ln

    r 1

    1

    2ln .

    (c) The general solution:

    x dy

    dx 2 y 4

    1y4

    dy 2 1x

    dx

    ln

    y 4

    2 ln

    x

    C.

    Using the initial value condition to solve for Cgives

    0 ln5 4 2 ln1 C C,and so our particular solution is

    lny 4 2 lnxy 4 x2

    y x2 4.

    4 WS7_Solutions.nb