wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

17
http://wps.prenhall.com/wps/media/ objects/1115/1141942/fig31-1.jpg p. 917 of text

description

http://wps.prenhall.com/wps/media/objects/1115/1141942/fig31-1.jpg. Countercurrent Flow in Fishes. http://greatneck.k12.ny.us:16080/GNPS/SHS/dept/science/krauz/marino_bio_notes/Osteichthyes_files/image034.gif. Figure 49.17 Structure and function of the human ear. - PowerPoint PPT Presentation

Transcript of wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Page 1: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

http://wps.prenhall.com/wps/media/objects/1115/1141942/fig31-1.jpg

p. 917 of text

Page 2: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

http://greatneck.k12.ny.us:16080/GNPS/SHS/dept/science/krauz/marino_bio_notes/Osteichthyes_files/image034.gif

Countercurrent Flow in Fishes

Page 3: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 49.17 Structure and function of the human ear p. 1091

Page 4: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Muscle types• Cardiac –under involuntary control, has striations

and intercalated discs to speed up signal between muscle fibers to help all fibers contract together.

• Skeletal –under voluntary control and has striations. Attaches to bones through tendons.

• Smooth – under involuntary control/contraction, not striated and lines blood vessels and digestive organs.

Page 5: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 49.31 The structure of skeletal muscle

Page 6: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 49.33 One hypothesis for how myosin-actin interactions generate the force for muscle contraction (Layer 4) p. 1105 in text

Page 7: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 49.32 The sliding-filament model of muscle contraction p. 1104

Page 8: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 49.34 Hypothetical mechanism for the control of muscle contraction p. 1106

Page 9: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 44.21 The human excretory system at four size scales p. 962

Page 10: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Figure 44.22 The nephron and collecting duct: regional functions of the transport epithelium

Page 11: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

p. 903

Page 12: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

p. 902

Page 13: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Number of heart chambers in vertebrates p. 901

Page 14: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

p. 919

Page 15: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Respiratory system in vertebrates

• Alveoli – increase SA for gas exchange

• Most carbon dioxide is transported as bicarbonate (HCO3-)

• You take a breath by responding to HIGH carbon dioxide levels that results in low blood pH. The “breathing center”of your brain that responds to this is in the medulla.

Page 16: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

Peristalsis occurs here – this is involuntary smooth muscle contraction to move food.

Bacteria produce vitamins

All groups of organic compounds are digested and absorbed here!

Liver MAKES bile

Page 17: wps.prenhall/wps/media/objects/1115/1141942/fig31-1.jpg

• Digestive

• System