WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree...

20
ERASMUS+ CBHE PROJECT Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5 (V4).docx - Outcome 1.5 Gaps between the needs and graduates’ competences Page 1 of 20 WP 1 - Gap Analysis Outcome 1.5 - Gaps between the needs and graduates’ competences Project Acronym: MSIE 4.0 Project full title: Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry Project No.: 586137-EPP-I-2017-I-TH-EPPKA2-CBHE-JP Funding Scheme: Erasmus + KA2 - Capacity Building in the field of Higher Education Coordinator: AIT Work Package: WP1 – Gap Analysis WP Leaders: Rui M. Lima (UMinho) and Wichai Chattinnawat (CMU) Task Title: Task 1.4 Identifying gaps Task Leader: Rui M. Lima (UMinho) Last version date: 24/01/2019 Status: Draft Dissemination Level: Institution - Local - National - International Disclaimer This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. Copyright © MSIE 4.0 Consortium, 2017-2020

Transcript of WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree...

Page 1: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page1of20

WP1-GapAnalysis

Outcome1.5-Gapsbetweentheneedsandgraduates’competences

ProjectAcronym: MSIE4.0

Projectfulltitle: CurriculumDevelopmentofMaster’sDegreePrograminIndustrialEngineeringforThailandSustainableSmartIndustry

ProjectNo.: 586137-EPP-I-2017-I-TH-EPPKA2-CBHE-JP

FundingScheme: Erasmus+KA2-CapacityBuildinginthefieldofHigherEducation

Coordinator: AIT

WorkPackage: WP1–GapAnalysis

WPLeaders: RuiM.Lima(UMinho)andWichaiChattinnawat(CMU)

TaskTitle: Task1.4Identifyinggaps

TaskLeader: RuiM.Lima(UMinho)

Lastversiondate: 24/01/2019

Status: Draft

DisseminationLevel: Institution-Local-National-International

Disclaimer

ThisprojecthasbeenfundedwithsupportfromtheEuropeanCommission.Thispublication[communication]reflectstheviewsonlyoftheauthor,andtheCommissioncannotbeheldresponsibleforanyusewhichmaybemadeoftheinformationcontainedtherein.

Reproductionisauthorisedprovidedthesourceisacknowledged.

Copyright©MSIE4.0Consortium,2017-2020

Page 2: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5
Page 3: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page3of20

REVISIONSHEET

Version Date Author(Partner/Person) Therevisionreason

1 23/10/2018 UMinho/RuiM.Lima Firstversion-draftversionofWP1Task1.4-Outcome1.5. Template structure for the report sent forWP1leaderfeedback.

2 28/11/2018 UMinho/RuiM.Lima Second version – draft version of WP1 Task1.4 -Outcome 1.5. Development of the contextualbackground.

3 16/01/2019 UMinho/RuiM.Lima Thirdversion–finalversionofWP1Task1.4-Outcome1.5.ThisversionintegratesagapanalysissupportedbythecurriculumanalysisdevelopedinTask1.2andtheresults of the questionnaire applied and cross-analysedbytheprojectteaminTask1.3.

4 24/01/2019 UMinho/RuiM.Lima FinalversionaccordingtoPECevaluation

DISTRIBUTIONLIST

ProjectPartner Acronym Responsible(fordissemination)

UniversityofMinho UMinho RuiLimaAsianInstituteofTechnology AIT HuynhTrungLuongChiangMaiUniversity CMU WichaiChattinnawatKingMongkut'sUniversityofTechnologyNorthBangkok KMUTNB AthakornKengpolThammasatUniversity TU SamerjitHomrossukonKhonKaenUniversity KKU SiroratPattanapairojPrinceofSongklaUniversity PSU SupapanChaiprapatUniversityPolitehnicaofBucharest UPB MadalinCATANACzęstochowaUniversityofTechnology CUT TomaszNITKIEWICZ

Page 4: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page4of20

TableofContents1 ExecutiveSummary...................................................................................................................................................72 Introduction...............................................................................................................................................................8

2.1 ContextBackground.........................................................................................................................................82.2 GapAnalysisBackground................................................................................................................................10

3 ComparingtheneedsofindustriesinThailandandEuropeanpartners’countries................................................134 IdentifyinggapsbetweentheneedsofindustryandthecompetenceofMSIEgraduates.....................................15

4.1 Technicalcompetencesgap............................................................................................................................154.2 Transversalcompetencesgap.........................................................................................................................18

5 DiscussionandRecommendations..........................................................................................................................196 References...............................................................................................................................................................20

Page 5: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page5of20

ListofFiguresFigure1.Triangularmodelofdatasourcesforgapanalysis...........................................................................10Figure2.Modelofanalysisofthegapbetweenindustryandstudents’needs..............................................11Figure3.Levelofadoptionoftechnology,aggregatedbyregion-levelofneed...........................................13Figure4.Levelofadoptionoftechnology–comparisonbetweencurrentlevelandlevelofneed...............13Figure5.Enablingco-designandco-construct,analysedbyThaiandEUcompanies....................................14Figure6.Adoptionofcomputeraidedsystemsgap.......................................................................................14Figure7.GapcomparisonbetweentheexpectedandcurrentlevelofcompetenceofMSIEgraduates.......17

Page 6: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page6of20

ListofTablesTable 1. Relative importance of types of outcomes of main technologies applied to main domains of

application...............................................................................................................................................15Table2.Bloomstaxonomyandweightusedforclassificationofcompetences.............................................16Table3.ResultsofIndustryNeedsCrossAnalysisandCorrespondingCompetencesGaps...........................16

Page 7: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page7of20

1 ExecutiveSummary

ThepreparationfordesigningphaseoftheMSIE4.0programincludesthecomparativeanalysisoftheactualsituation concerning theMSc curricula in Industrial Engineeringoffered inThai andEUpartner countriesuniversities,theidentificationoftheneedsofindustrytoattainIndustry4.0,theidentificationoftheneedsofstudentsperceivefortheirowndevelopment.Aftersettingtheneeds,itispossibletoidentifythegapsbetweentherealneedsoftheindustry,thestudentneedsandtheactualofferedcurricula,whichwillinformthe identificationofcompetitivefactorsandrecommendationsforthenewcurriculumdevelopment.Thecurrent report isdedicatedto thegapanalysisbetweenthe industryandstudents’needsandgraduates’competencesandacomparisonbetweenindustryneedsofThaiandEuropeanselectedcompanies.

TheresultsofthecomparisonbetweenindustryneedsofThaiandEuropeanselectedcompaniesshowthat,in general, Thai companies have a higher need of development of technologies and systems to supportIndustry 4.0 than the European surveyed companies do. These results give support to the need ofdevelopmentofaneducationalprogramsuchastheMSIE4.0thatwillallowthedevelopmentofIndustrialEngineerstomakeacontributionforbridgingthisgap.

Thecompetencesgapanalysisisinformed,ononeside,bytheindustryandstudents’needsdevelopedinpreviousreportbasedonquestionnairesansweredby72companiesand450students.Bytheotherside,theanalysisof26masterprogramsinIndustrialEngineeringallowedtocreateaperspectiveonthecurrentstatusofcompetences’development.TheanalysisofcompetencesneededbyindustrytoattainIndustry4.0wasalsoenhancedbytheviewoftheproject’steambasedonthequestionnairedataandtheanalysisofthecurriculum.Thus,thegapanalysiswasbasedonatriangularanalysisdatasourcebetweenindustryneeds,students’needsandcurriculacurrentsituation.

Thedatacollected fromthe industryandstudentsquestionnairesallowedto identify threemainneededtechnologiesasbeingBigData,SensorsandMobilesystems,andthreemaindomainsofapplicationasbeingproduction,productdevelopmentandIT.Furthermore,thoseaspectswerecrossanalysedbytheproject’steamanddevelopedintoapplicationsIndustrialEngineersshouldbeabletodealwithintheirmanagerialroles. These evolved to the identification of the competences level, based on Bloom’s taxonomy, thatgraduatesshouldbeabletodevelop.Forthegapanalysis,theproject’steamaddedananalysisofthecurrentsituationrelatedtothedevelopmentofthislevelofcompetences.Theweightofthelevelofcompetencesandthecomparisonbetweenthecurrentlevelofdevelopmentandtheneededlevel,allowedtoidentifythefollowing areas of application as having themain gaps in required competences: Data Analytics,QualityManagement,FlexibleProductionPlanningandSchedulingforChangingDemandsandCustomization,Trendanalysis, Data Distribution, Logistic and supply chainmanagement, Forecasting, InventoryManagement,MaintenanceManagementandRealTimeProcessControl.

TheprofessionalroleofEngineersneednotonlytechnicalcompetences,butalsotransversalcompetences,has stressed internationally by Higher Education systems. Additionally, both companies and studentsidentifiedthedevelopmentoftransversalcompetencesasbeinghighlyimportant.Nevertheless,theanalysisofcurriculashowedbarelyexistentreferencestothedevelopmentoftransversalcompetences incurrentmasterprograms.Thus, there isahugegapregarding theexplicit intentionaldevelopmentof transversalcompetences.

In summary, this report show themaingapsbetweenthe current levelofdevelopmentof technical andtransversal competences and the industry and students’ needs, which will contribute for the MSIE4.0curriculadesign.

Page 8: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page8of20

2 Introduction

WP1aimstoprovideacomparativeanalysisoftheactualsituationconcerningtheMSccurriculainIndustrialEngineeringofferedinThaiandEUpartnercountriesuniversities,theidentificationofthegapsbetweentherealneedsoftheindustry,thestudentneedsandtheactualofferedcurricula.Withinthiscontext,task1.4aimstoanalysegapsbetweentheactualcompetenceofMScgraduatesinIndustrialEngineeringandtherealneedsofindustryforThailand4.0andIndustry4.0andinEUcountriesreferringtoEurope2020goals.Theoutcomeofthetaskarepresentedintheformofareport.

2.1 ContextBackgroundWith the development of the Internet, increasingly smaller andmore powerful sensors and increasinglysophisticatedsoftwareandhardwaresystemscreateanadequateenvironment formachine learningandcollaborationthroughgiantnetworksof"things".Theintegrationofthesesystemsinindustrialenvironmentshasbeencausingachangeintheindustry.Theimpactoncompetitiveness,societyandtheeconomyissuchthatitwilltransformtheworldasweknowit.Computer-baseddigitaltechnologies,softwareandnetworksare not new, but they are becoming more sophisticated and integrated and therefore capable oftransformingsocietyandtheglobaleconomy.BrynjolfssonandMcAfee(2014)statethattheworldisataturningpoint inwhichtheeffectofthesedigitaltechnologieswillmanifest itselfwith"fullforce"throughautomationand"unprecedentedthings".

ThefourthindustrialrevolutionisatermthatcanbeattributedtotheideaofIndustry4.0,firstusedattheHannoverFairin2011andsubsequentlypresentedasoneoftenfutureprojectsidentifiedbytheGermangovernmentaspartofitsactionplanofthe2020strategy(BMBF,2014).Morerecently,thetermbecameassociatedwith theworkof Schwab (2017), theGermaneconomist and founderof theWorld EconomicForum(WEF),inhisbook"TheFourthIndustrialRevolution".

TheFourthIndustrialRevolutionputsusonthevergeofatechnologicalrevolutionthatwillfundamentallyalterthewaywelive,workandrelatetooneanother(Schwab,2017;WEF,2016). In itsscale,scopeandcomplexity,thetransformationwillbedifferentfromwhathumanityhasexperiencedbefore.Westilldonotknowhowthiswillunfold,butonethingisclear:theresponsetoitmustbeintegratedandcomprehensive,involvingallstakeholdersinglobalpolicy,fromthepublicandprivatesectorstoacademiaandcivilsociety.

TheIndustry4.0conceptdemandsinterdisciplinaryapproaches,closingthecooperationbetweenkeyareasanddifferenttechnologies.Mostofthepillarsoftechnologicaladvancesarecurrentlyinstalled,butisolated,i.e. non-integrated, and it is in Industry 4.0 that these technologies will transform production throughinteroperability.Isolated,optimizedcellsbindtoformfullyintegrated,automatedandoptimizedproductionflows,providinggreaterefficiencyandashiftintraditionalrelationshipsbetweendistributors,producersandcustomers,andbetweenmachinesandhumans.ThemainninepillarsoftechnologicaladvancementcreateacommongroundfortheIndustry4.0(Rüßmannetal.,2015):BigDataandanalytics;AutonomousRobot;Simulation;HorizontalandVerticalSystemIntegration;TheIndustrialInternetofThings;Cybersecurity;Thecloud;AdditiveManufacturingandAugmentedReality.

Big Data and analytics - Allows to optimize production quality, save energy and improve equipmentefficiency.InI4.0,thecollectionandexhaustiveevaluationofdatafrommanydifferentsources(equipmentand production systems, customer management systems ...) becomes a standard to support real-timedecisionmaking.Theconceptactsasalargedatabaseandappearsintheindustrialworldduetotheincreaseintheamountofdatatobeanalysedfromdifferentsources,suchasequipmentandsystems.

AutonomousRobot-Theconceptprovidesgreaterutilityforautomation,makingitflexibleandcollaborativeinthatitinteractswithotherrobotsandworkshandinhandwithhumans,safely,learningfromthem.

Simulation-Intheengineeringphase,3-Dsimulationsofproducts,materialsandproductionprocessesarealreadyused, but in the future, simulationswill beusedmore intensively in industrial operations. These

Page 9: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page9of20

simulationswillleveragereal-timedatatomirrorthephysicalworldintoavirtualmodel,whichmayincludemachines,products,andhumans.

HorizontalandVerticalSystemIntegration-Mostinformationtechnologysystemsarenotfullyintegrated.Companies, distributors and customers are often not connected aswell as different departments of thecompany, like engineering, production or service. However, with Industry 4.0, companies, departments,functionsandcapabilities,willbemuchmorecohesivethroughuniversaldataintegrationnetworks,whichmayenablevaluechainstobetrulyintegratedandinteroperable.

TheIndustrialInternetofThings-Withtheindustrialinternetofthings,moredevicesandequipmentwillbeintegratedandconnectedthroughtechnologicalstandards.Thiswillallowthedevicestocommunicateandinteractwitheachother.

Cybersecurity -Thegeneral industry stilldependsonunmanagedorclosedproductionandmanagementsystems.However,with increasedconnectivityanduseof standardcommunicationprotocols involved inIndustry 4.0, the need to protect critical systems and industrial production lines from cyber threatswillincreasedramatically.

Thecloud-Somecloud-basedsoftwareandanalyticsapplicationsarealreadybeingused,butwithIndustry4.0, a greater number of production-related tasks requires more data exchange between sites andenterprises.Atthesametime,theperformanceofcloudtechnologieswillimprove,reachingreactiontimesofafewmilliseconds.Asaresult,thedataandfunctionalityofthemachineswillincreasinglyuseofcloudcomputing,allowingmoredata-drivenproductionsystemsservices.

AdditiveManufacturing-Currently3Dprintingismainlyusedforprototypingandproductionofindividualcomponents.With Industry 4.0, this technologywill bewidely used to produce small batches of customproducts.Wewillhavedecentralized,highperformanceadditiveproductionsystems,reducingtransportandstoragedistances.

AugmentedReality -AugmentedRealitysystemsbasedonsupportingavarietyofservices,suchaspartsselectioninawarehouseandmaintenanceoperationsthroughmobiledevices.Thistechnologyattheserviceofproductionmanagementisstillatanearlystage,butinthefuturecompanieswillgiveaugmentedrealityagreaterimportance,toprovideworkerswithreal-timeinformationinordertoimprovedecision-making.

Industry4.0 facilitates the visionand implementationof "smart factories"with theirmodular structures,cyber-physicalsystems(CPS)thatmonitorandcontrolphysicalprocesses,andthecreationofavirtualcopyofthephysicalworldthatfacilitatesdecentralizeddecisions. Inaperspective,withthe internetofthings,cyber-physical systems communicate and cooperatewith each other andwith humans in real-time, andthroughcloudcomputing.Inthisway,itcontributestointernalandintra-organizationalservicesbeingmadeavailable and used by participants along the value chain (Hermann, Pentek, & Otto, 2016; Kagermann,Wahlster,&Helbig,2013).Inthiscontext,severalchangesareexpectedintheindustrialworld,inordertogivemeaning to theconceptsof "smartmanufacturing"and"smart industry",withproductionprocessesbasedontheintegrationofphysicalproductionwithdigitaltechnologies,collectingandanalyzingdataonoperationsandsupplychain,andcontributinginrealtimetoimprovementsinproduction,procurementandsupplychainmanagement(Schwab,2016).Moreover,withtheincorporationofthistypeoftechnology,theproductshavebecomecomplexand integrated, thusbecomingsystemsthatcombinehardware,sensors,datastorage,microprocessors,softwareandconnectivity.Thisso-calledSmartConnectedProducts(SCP)hasunleashedanewerainintercompanycompetition,throughfunctionalenhancements,deviceminiaturizationandwirelessconnectivity.Theyopenupa rangeofnew functionalityopportunities,ofgreater reliability,greaterutilityandcapacity,crossingthebarriersofthepreviousconceptofaproduct,which increasinglymergeswiththeservice(Porter&Heppelmann,2015).

Page 10: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page10of20

TrainingandcontinuousprofessionaldevelopmentarekeyfactorsinachievingtheobjectivesofIndustry4.0,astheywillsignificantlytransformtheworkprofilesandcompetencesofworkers.Therefore,partnershipsbetweencompanies/factoriesandhighereducationinstitutionswillbeevenmoreimportantinthefuture.Itwillbe important toopenupaccess toscienceandengineeringstudiesandplacegreateremphasisoncrosscutting competences’ development and assessment. Increasingly powerful digital technologies haveevolvedveryrapidlyandareaffectingthedemandforhuman labour, invadingareasthatusedtobe justpeople's domain, such as complex communication and advanced pattern recognition (Brynjolfsson &McAfee,2012).Inthisway,itisnecessarytoanalysetheemergingchallengesthatIndustry4.0sets-upandhow these challenges influence the professions, industrial relations and the necessary competences, inplanetaryconditionsthatnohumanbeinghaseverexperienced(Schwab,2016).Thisprojectaimstomakeacontribution to bridging this gap of new competences needed by professional practice and theway theacademicworldcanevolveandhelp itsgraduates in the fieldof IndustrialEngineering.Highereducationinstitutions need to provide both in-depth subject knowledge, and an ability to make interdisciplinaryconnections, creating theopportunity todevelopbothcognitiveandnon-cognitive focusedcompetences(WEF,2017).

2.2 GapAnalysisBackgroundGap analysis is based on the comparison between the current state of competences development inindustrial engineering (IE) programs, the current perception that IE students have about their owncompetences and the needs industries are facing to develop themselves towards Industry 4.0. Thiscomparisonrequiredatriangularapproachtodatacollection,withthreemainsourcesofinformation:

Figure1.Triangularmodelofdatasourcesforgapanalysis

Themainactivitiesoftask1.4arethefollowing:

• ComparingtheneedsofindustriesinThailandandEuropeanpartners’countries

• IdentifyinggapsbetweentheneedsofindustryandthecompetenceofMSIEgraduates

ThecomparisonbetweentheneedsofindustriesinThailandandEuropeanpartners’countriesisbasedonindustrysurveyresultsrelatedtoIndustry4.0.Thequestionnairesentto72companiesallowedidentifyingtheneedsperceivedbycompaniesinregardtothedevelopmenttowardsIndustry4.0.Moreover,itallowedto identify someof themain technological anddomains of applicationneeds. The combinationof theseresults, allowed to create an image of the needs of companies, with the desired and/or requiredcompetences for the development toward Industry 4.0. The questionnaire answered by 450 industrialengineeringmasterstudentsallowedtoidentifythecompetencestheyperceiveasneededfortheroleof

IndustrySurvey

StudentSurvey

ReviewonCurrentMSIECurricula

GapIdentification

Page 11: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page11of20

Industrial Engineering professionals in the implementation of Industry 4.0. Additionally, the analysis ofexisting curricular approaches created a perspective on the current way the Industrial Engineeringcompetencesarebeingdeveloped(curriculuminduced)inmasterprograms.Figure2illustrateshowthegapbetweentheneedsofindustryandthecompetenceofMSIEgraduateswasidentified.

Figure2.Modelofanalysisofthegapbetweenindustryandstudents’needs

Thismodelofanalysisdrawsontheresultsoftasks1.2and1.3.Task1.2startedwithananalysisofIndustrialEngineeringprograms,whichshowedthatmostofthecurricularapproachesofmasterprograms,atbothThaiandEuropeanuniversities,arebasedonahighdiversityofcourseareasduringthefirstyear,followedbythedevelopmentofathesisinthesecondyear.Althoughthediversityofcoursesishigh,itwasclearthatit is not yet aligned with what could be expected from main knowledge areas related to Industry 4.0.Additionally, the relation between this structure and current recommendations found in literature andprofessionalorganizationsshowthatthereisaneedtodevelopflexiblecurricularsolutionsaligningcurricularelementsforthedevelopmentofbothtechnicalandtransversalcompetences.

MainresultsofTask1.2-Outcome1.3,aboutpedagogicalapproaches,showedthatthereisalackofActiveLearning environments and approaches such that the Industry 4.0 competences can be developed in aneffective way.Moreover, these Active Learning environments may be developed usingmultidisciplinaryProblemandProject-Based Learning in interactionwith industrial accompanies,whichwill contribute forcurriculathataremoreflexibleandalignedwiththeindustryneeds.

MainresultsofTask1.3–Outcome1.4showedthatthecoreneedsidentifiedbyindustriestowardsIndustry4.0arethreemaintechnologies,BigData,SensorsandMobiledevices,whichwillbeusedforapplicationsinthe domains of production, product development and IT systems. These results were confirmed by thestudents’survey,whichshowedthattheyperceivetheneedtodevelopthosetechnologiesanddomainsofapplication.Additionally,theteamoftheproject,developedacrossanalysisofthepreviousdataandcreatedaperspectiveofthemaincompetencesindustrialengineershavetouseintheirmanagerialroles,toachievetheexpectedoutcomesfromtheutilizationoftheabovereferredmaintechnologiesinthecoredomainsofapplication.Thisresultwascreatedinsuccessiveiterationsandrefinementsofamatrixofrelationbetweenthreemaintechnologies,threemaindomainsofapplication,outcomes,applications,managerialrolesandlevelofcompetences.Thismatrixwaspresentedattheendofthepreviousreport.

Inthecontextofthecurrentreport,theproject’steamofexpertsdevelopedaperspectiveonthecurrentexistinglevelofdevelopmentofthecompetencesthatwereconsideredneededforIndustrialEngineerstobeabletogivesupporttocompaniesattainingIndustry4.0.Thus,anewfieldofanalysis(currentlevelofcompetence)wasaddedtothepreviousreferredmatrix.Thecurrentlevelofthecompetencewasproposedbytheteam’sexperts,deeplyinfluencedbytheinformationtheygatheredfortheanalysisofcurriculafromprevious tasks. Finally, the comparison between current level of development of competences and theneededcompetences,allowedtoidentifyagapinstudentcompetences.

Industryneededcompetences (desiredorrequired)

GAP Students’competences(perceivedorinduced)

Page 12: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page12of20

Datafromindustriesandstudents’surveyabouttransversalcompetences,comparedwiththeanalysisofcurricula, and with teaching and learning methods, allowed to identify a gap in the development oftransversalcompetences.

Thefollowingsectionssummarizetheexistingsituationandthegapsbetweenthecurrentneedsofindustryandstudents,basedonthefollowingmaindimensions:comparingtheneedsofindustriesinThailandandEuropeanpartners’countries;identifyinggapsbetweentheneedsofindustryandthecompetenceofMSIEgraduates.

Page 13: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page13of20

3 ComparingtheneedsofindustriesinThailandandEuropeanpartners’countries

Theresponsestothequestionnaire,presentedinthereportforTask1.3,showedthatthemaintechnologicalneedsofbothselectedThaiandEuropeancompaniesareBigData,SensorsandMobiledevices(Figure3–repeatedfromthepreviousreport).Theseresultsshowthat there isahighconsensusbetweenThaiandEuropeancompanies.Nevertheless,ispossibletoidentifyconsistentlyahigherpercentageofThaicompaniesindicatingtheneedoftechnologiesincomparisonwithselectedEuropeancompanies.TheoppositeresultcanbeidentifiedjustinthecaseofM2MandEmbeddedIT.

Figure3.Levelofadoptionoftechnology,aggregatedbyregion-levelofneed.

Theanalysisofthehighestgapbetweenthecurrentlevelofimplementationandthecurrentneeds(Figure4–repeatedfromthepreviousreport)showsthatthehighestgapscanbeidentifiedinBigData,followedbySensortechnologies.Thisresultgivesan indicationthattheremaybecurrentlyahigher levelofneedforcompetencesrelatedtothesetwotechnologies.

Figure4.Levelofadoptionoftechnology–comparisonbetweencurrentlevelandlevelofneed.

Theanalysisoftheproductdesign,configuration,andcreationinfluencedbycustomers,i.e.theanalysisofthewaycompaniesenableacustomertoco-designandco-constructtheirproducts,services,andintegratedproductsandservicesshowssomedifferencesbetweenThaiandEuropeansurveyedcompanies.Figure5(repeatedfromthepreviousreport)showsthatthehighershareofcompaniesenablingco-designandco-

40%

20%

62% 66% 56%

38% 38% 38%

23%

36%

55% 45% 45%

23% 23%

41%

0%

10%

20%

30%

40%

50%

60%

70%

RFID M2M BigData Sensor Mobile RealtimeLocation

CloudTechnology

EmbeddedIT

ThaiNeed%

EUNeed%

Sensor Mobile RFID RealtimeLocation BigData Cloud

TechnologyEmbedded

IT M2M

Need 60% 53% 35% 33% 60% 33% 39% 25% Usage 44% 50% 29% 29% 28% 26% 38% 6%

0% 10% 20% 30% 40% 50% 60% 70%

Relativ

efreq

uency

Page 14: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page14of20

constructcouldbeobserved inEUbasedcompanies.Physicalproductsarethemostcommongroundforsuchpractices,butservicesandintegratedproductsandservicesarefollowingthisschemeaswell.

Figure5.Enablingco-designandco-construct,analysedbyThaiandEUcompanies

AnothergapidentifiedbetweenThaiandEuropeansurveyedcompaniesisrelatedtotheuseofcomputer-aidedsystemstomanagecertainareasofitsoperations.Figure6showsavisiblegapbetweenthepercentageofThaiandEuropeancompaniesusingthesesystems.ThisdifferencepointsouttoahigherneedofThaicompaniestoimplementthesetypeofmanagementsystems:MES–manufacturingexecutionsystem,ERP–enterpriseresourceplanning,PLM–productlifecyclemanagement,PDM–productdatamanagement,PPS–productionplanningsystem,MDC–machinedatacollection,CAD–computer-aideddesignandSCM–supply chain management. PPS and SCM are the only two systems in which the European surveyedcompaniesdonothaveahigherlevelofutilization.

Figure6.Adoptionofcomputeraidedsystemsgap

The results presented in this section show that, in general, Thai companies have a higher need ofdevelopmentoftechnologiesandsystemstosupportIndustry4.0thantheEuropeansurveyedcompaniesdo.TheseresultsgivesupporttotheneedofdevelopmentofaneducationalprogramsuchastheMSIE4.0thatwillallowthedevelopmentofIndustrialEngineerstomakeacontributionforbridgingthisgap.

66.0% 48.0% 48.0%

58.0% 42.0% 48.0%

95.5% 81.8%

72.7% 81.8%

63.6% 63.6%

Product Service Product/ServiceIntegration

Product Service Product/ServiceIntegration

ThaiCompany EUCompany

co-design co-construct

24%

64%

22%

36%

50%

32% 32%

46%

62%

50%

73%

45%

55% 50%

36%

50%

77%

59%

MES ERP PLM PDM PPS PDA MDC CAD SCM

THAI% EU%

Page 15: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page15of20

4 IdentifyinggapsbetweentheneedsofindustryandthecompetenceofMSIEgraduates

NextsubsectionswillpresentthemainidentifiedgapsbetweentheneedsofindustryandthecompetenceofMSIEgraduates.

4.1 TechnicalcompetencesgapAspreviouslyreferred,theresultsofTask1.3showedthatthemainneedsidentifiedbyindustriestowardsIndustry 4.0 are the three technologies, Big Data, Sensors and Mobile devices, which will be used forapplicationsinthedomainsofproduction,productdevelopmentandITsystems.Theprojectteamidentifiedtheneedtocreateamorespecificperspectiveoftheexpectedroleandcompetencesofindustrialengineersinrelationwiththesetechnologiesanddomainsofapplication.Thus,throughaniterativeprocess,theteamdeveloped a list of needs for Industry 4.0, categorised by types of outcomes and applications that waspresentedinsection6oftheprevioustaskreport.

Additionally,duringthedevelopmentofTask1.3,theprojectteamofexpertsdevelopedananalysisoftherelative importance of the Industrial Engineer roles. In this process, the experts expressed their opinionconsidering the relative importance of Industrial Engineers roles and the expected result for themasterprogramgraduates.Theresultwaspresentedinthepreviousreport.Expertsconsideredthemostimportanttechnologies,fromthehighesttothelowest,tobeBigData(weight3),Sensors(weight2)andMobiledevices(weight1).Additionally,expertsconsideredthemostimportantdomainsofapplication,fromthehighesttothelowest,tobeproduction(weight3),productdevelopment(weight2)andIT-basedintegratedsystems(weight1).Consideringtherelativeimportance,itwasalsopossibletocreatearankingofoutcomesthatishelpful to build a perspective of the expectedprofile of themaster programgraduates. Thus, outcomesrelatedtoBigDataandProductionhaveacombinedweightof9(3x3).Theoverallresultsoftherelativeimportance of types of outcomes of main technologies applied to main domains of application arerepresentedinTable1.

Table1.Relativeimportanceoftypesofoutcomesofmaintechnologiesappliedtomaindomainsofapplication

MainTechnologies Domainsofapplication Outcomes Weight

Bigdata Productiontechnology BetterSolutionforVariousIndustryPracticalProblems 9

Bigdata Productdevelopment UtilizationofDataforBetterResponsiveness 6

Sensors Productiontechnology RealTimeDataforoperationsmanagement 6

Sensors Productdevelopment Rapiddevelopmentof(smart)products 4

Bigdata IT-basedIntegratedSystem DataManagement 3

MobileDevices Productiontechnology AccessibilitytoInformation 3

Sensors IT-basedIntegratedSystem TrackingSystems 2

MobileDevices Productdevelopment CustomerEngagement 2

MobileDevices IT-basedIntegratedSystem Datatransfer 1

Theteamofexpertsiterativelydevelopedalistofapplicationsthatindustrialengineersshouldbeabletodevelopanddealwith,indifferentlevelsofcompetences’complexitywithindifferentmanagementroles.This list and cross analysis allowed to embody a vision on the relative importance of the necessarycompetences.Thecompleteviewonthisperspectivewaspresentedinthepreviousreport.

Moreover,inordertodevelopaperspectiveofthepotentialexistinggap,theteamdevelopedacommonview (average) of the current level of development of competences in each of the previously referred

Page 16: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page16of20

applications(seeabove).ThecompetenceswereclassifiedaccordingtoBloomstaxonomyandweightedwithavalueof1to5,rangingfromunderstandingtocreatingrespectively,asillustratedbyTable2.Thelowlevelrememberingwasnotconsideredintheclassification.

Table2.Bloomstaxonomyandweightusedforclassificationofcompetences

Description Create Evaluate Analyse Apply Understand NotexistWeight 5 4 3 2 1 0

If anexpert identified the currentprogramof its institution asnothaving the specific expected learningoutcome,thenavalueofzerowouldbeattributedtotheweight.ThesummaryoftheassessmentisavailableinTable3.

Table3.ResultsofIndustryNeedsCrossAnalysisandCorrespondingCompetencesGaps

Applications RoleofMSIEGraduates

TargetCompetence

Level

AVG.CurrentSkillLevel

AVG.GapLevel

QualityManagement Improvement 5 0.29 4.71FlexibleProductionPlanningandSchedulingforDemandChangesandCustomization Improvement 5 0.43 4.57

MaintenanceManagement Improvement 5 0.43 4.57DataDistribution Improvement 5 0.57 4.43Logisticandsupplychainmanagement Improvement 5 0.57 4.43InventoryManagement Improvement 5 0.71 4.28Trendanalysis Improvement 5 0.86 4.14Forecasting Improvement 5 1.00 4RealTimeProcessControl Control 4 0.71 3.28DataAnalytics Improvement 4 0.86 3.14RemoteMonitoringandControlFunctionsofProductforService Monitoring 3 0 3

ConditionBasedMaintenance Improvement 3 0.14 2.86OperationalSafety Monitoring 3 0.17 2.83AutomaticGuidedControlSystem Monitoring 3 0.29 2.71CustomerNeedAnalysis Control 3 0.57 2.43QFDandFMEA Control 3 0.57 2.43ResourcesAllocation Control 3 0.57 2.43LocationTrackinginLogisticManagement Monitoring 3 0.71 2.28WarehouseOperationsManagement Monitoring 3 1 2InteractiveCommunication Monitoring 2 0 2DataEnvelopmentAnalysis Monitoring 2 0 2DataTransfer Monitoring 2 0 2SmartProductwithSensorEmbedded Control 2 0.14 1.86ReverseEngineering Monitoring 2 0.14 1.86ProductLifeCycleAssessment Control 2 0.29 1.71BusinessProcessModeling Control 2 0.29 1.71DataRetrievalandFiltering Observing 2 0.29 1.71DataMining Observing 2 0.29 1.71VirtualLaboratoryandSimulation Monitoring 2 0.57 1.43RemoteMonitoring Monitoring 2 0.57 1.43Co-createdDesign Control 2 0.57 1.43ShopFloorControl Control 2 0.71 1.28

Page 17: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page17of20

Figure7presentstheresultofthegapcomparisonbetweentheexpectedcompetenceofMSIE4.0graduatesandcurrentcompetence,orderedfromthemosttotheleastimportant.Asanexample,thecompetencesrelatedtotheapplicationsthatwillimprovesolutionsforvariousindustrypracticalproblems,usingBigdatainthedomainofproductiontechnologyareconsideredthemostimportantwithacombinedweightof9.Thesearepositionedintheleftpartofthegraph.Onecanidentifythehighestgapsinthisleftpart,becausethisarethecompetenceswithexpectedhighestlevelsofcomplexity(accordingtobloom’staxonomy).Theassessmentalso indicatesthat thecurrentcurriculacannotbuildsufficientcompetences forgraduatestosupportsustainablesmartindustry.

Figure7.GapcomparisonbetweentheexpectedandcurrentlevelofcompetenceofMSIEgraduates

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DataAnalytics

QualityManagem

ent

FlexibleProdu

ctionPlanningand

SchedulingforD

emandCh

angesa

nd…

Trendanalysis

DataDistrib

ution

Logisticand

sup

plychainmanagem

ent

Forecasting

InventoryManagem

ent

MaintenanceM

anagem

ent

Custom

erNeedAn

alysis

Prod

uctL

ifeCycleAssessm

ent

Busin

essProcessMod

eling

QFD

and

FMEA

Shop

FloorCon

trol

Cond

ition

BasedM

aintenance

RealTim

eProcessCo

ntrol

Operatio

nalSafety

SmartP

rodu

ctw

ithSensorE

mbedd

ed

ReverseEngineering

VirtualLaboratoryandSimulation

RemoteMon

itorin

g

InteractiveCo

mmun

ication

DataRetrie

valand

Filtering

DataM

ining

DataEnvelop

mentAn

alysis

ResourcesAllocatio

n

Co-createdDesign

Warehou

seOperatio

nsM

anagem

ent

Locatio

nTrackinginLo

gisticM

anagem

ent

AutomaticGuidedCo

ntrolSystem

RemoteMon

itorin

gandCo

ntrolFun

ctionsofP

rodu

ctfo

rService

DataTransfer

TargetCompetence AVGCurrentCompetence

Page 18: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page18of20

4.2 TransversalcompetencesgapOneofthemostexplicitresultsofthequestionnaireappliedinthecontextoftask1.3isthatstudentssaytheyneedtodeveloptransversalcompetences.Specifically,asreferredinthepreviousreport,theanalysisoftheresponsesofthestudentsthatperceivetheimportanceofdevelopmentofthesetypesofcompetencesinthenearfuture,orfeeltheyshouldhavedevelopedtheminthenearpast,allowedtoidentifythehighlevelofimportancestudentsassigntotransversalcompetences.Theseresultsrangefrom90.7%to95.1%.Despitethefactthatallresultsareextremelyhigh,above90%,itispossibletocreatethefollowingrankingoftherelativeimportanceofthetransversalcompetences:

1) Adaptabilityandabilitytochange 95.1%2) Teamwork 94.0%3) Communicationskills 93.3%4) Socialskills 93.3%5) Selfandtimemanagement 92.4%6) Legalaffairsandsustainability 90.7%

Inshort,itispossibletoconcludethatmorethan90%ofthestudentsconsidertransversalcompetencesashighlyimportantintheirdevelopment.

Another way of analysing the need for transversal competences came from surveyed companies, aspresentedinthepreviousreport.Transversalcompetencespresentedthehighestpercentageofcompaniesidentifyingitneeded(non-existentplusexistentbutinadequate,76.4%).Addingtothefactthatitisthetypeofcompetenceselectedbythe lowestpercentageofcompaniesasbeingadequate(15.3%),giveastrongindicationthatitisahighlyimportanttypeofcompetencetobedevelopedbyIndustrialEngineers.

Theanalysisoflearningoutcomespresentedinthereport"GD-T1.2_O1.2"presentaresidualpercentageofreferences to learning outcomes (LO) in the formal curriculum. The only LOs related to transversalcompetences identified in the analysed curricula are: Communication competences (4%), Teamworkcompetences(1%),Abilitytosolveproblems(1%),Leadershipcompetences(1%),Professionalethic(1%)andForeignlanguages(2%).

Thus,addingtothefactthattheanalysisoflearningoutcomespresentedinthereport"GD-T1.2_O1.2",doesnot present almost references to transversal competences, the main conclusion is that a transversalcompetencesgapmustbeovercome.

Page 19: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page19of20

5 DiscussionandRecommendationsThis project aims developing a master program for Thai graduates being able to make a successfulcontributionincompaniesaimingtoevolvetoIndustry4.0.Inordertocreateabetterunderstandingoftheneedsofcompanies,acomparisonbetweenThaiandEuropeansurveyedcompanieswasdeveloped.Inthiscomparison,agapwasidentifiedinwhich,ingeneral,Thaicompanieshavetodeveloptheircompetencesregardingco-designandco-construct,asoneoftheIndustry4.0dimensions.AnothergapidentifiedbetweenThaiandEuropeansurveyedcompaniesisrelatedtotheuseofcomputer-aidedsystemstomanagecertainareasofitsoperations,showingavisiblegapbetweenthepercentageofThaiandEuropeancompaniesusingthesesystems.ThisdifferencepointsouttoahigherneedofThaicompaniesto implementthesetypeofmanagementsystems:MES–manufacturingexecutionsystem,ERP–enterpriseresourceplanning,PLM–productlifecyclemanagement,PDM–productdatamanagement,PPS–productionplanningsystem,MDC–machinedatacollection,CAD–computer-aideddesignandSCM–supplychainmanagement.

Finally, the analysis between the needs and current level of implementation of technologies related toIndustry4.0,confirmedthatBigDataandSensortechnologiesarenotonlythetwomostneededtechnologiesaccording the surveyed companies, but also the two with the highest gaps between levels of currentimplementation and needs. This analysis allowed to create a perspective on the technical competencesneededbyIndustrialEngineerstowardsIndustry4.0.

TechnicalcompetencesarethecorecompetencesofanIndustrialEngineering(IE)professionalactivity,anditiswhatmakesapersonidentifiableasbeingabletoexecuteactivitiesfromthatspecificprofession.Thus,itisnormalthatduringtheimplementationofcourses,astrongemphasisisgiventothedefinitionofthesetypeofcompetences.IntheinitialphasesofdevelopmentoftheMSIE4.0projecttheteamdevelopedtheanalysis of several IEmaster programs for creating a viewon theway competences are proposed to bedeveloped.Theresultof thisanalysis, comparedwithcurrent trendsandwith theexistingknowledgeonmosteffectivewaysofdevelopmentofcompetencesinEngineeringEducation,allowedtheneedtoapplyActive Learning and Industrial PBL approaches. These approaches contribute to reduce a gap that wasgloballyidentifiedandisbeingtackledinthelastdecades,inwhichastrongeremphasisisbeingputontheneedtodevelopprofessionalsabletoperformwithhigherefficiencyandefficacyrightfromthebeginningoftheirprofessionalactivity.

In order to create a better understanding of the need of competences, in addition to the industryquestionnaire, a students’ questionnaire was developed and applied. The results of the analysis of thisquestionnaire were developed in the previous report. These results were combined with the results ofindustry needs and a view of needs collected from academic experts enrolled in MSIE4.0 project. Thiscombinationof resultsevolvedtothe identificationofa listofmainapplicationsrelatedtothe IndustrialEngineering role in the Industry4.0 context.Crossing this listwith the current stateof learning curriculaallowed todevelopaviewon theexistinggap in technical competencesof IEgraduateswhen related toIndustry4.0.TheidentificationofthehighestgapisrelatedtothemainneededtechnologiesanddomainsofapplicationforIndustry4.0,accordingtothesurveyedcompanies:BigDataandSensorscross-relatedwithProductionandProductdevelopment.

TheprofessionalroleofEngineersneednotonlytechnicalcompetences,butalsotransversalcompetences,has stressed internationally by Higher Education systems, which lead to the importance of defining theexpected transversal competences that graduates shouldbedeveloping in their degrees. The analysis ofcurricula showed barely existent references to the development of transversal competences in currentmaster programs. Additionally, both companies and students identified the development of transversalcompetences as being highly important. Thus, there is a huge gap regarding the explicit intentionaldevelopment of transversal competences. Considering the identified need for transversal competencestoward Industry 4.0, the MSIE4.0 curriculum should give the due importance to the development oftransversalcompetences,whicharerequiredbytheIndustry4.0professionalactivities.Thedevelopmentofcompetencesneedtheimplementationofspecificeducationalstrategiestobeeffective,andthisshouldbeconsideredinthecurriculumdevelopment.

Page 20: WP 1 - Gap Analysis Outcome 1.5 - Gaps between …...Curriculum Development of Master’s Degree Program in Industrial Engineering for Thailand Sustainable Smart Industry GD-T1.4_O1.5

ERASMUS+CBHEPROJECTCurriculumDevelopmentofMaster’sDegreeProgramin

IndustrialEngineeringforThailandSustainableSmartIndustry

GD-T1.4_O1.5(V4).docx-Outcome1.5Gapsbetweentheneedsandgraduates’competences

Page20of20

6 ReferencesBMBF. (2014). The new High-Tech Strategy Innovations for Germany. Retrieved from

https://www.fona.de/pdf/publikationen/bmbf_the_high_tech_strategy_for_germany.pdfBrynjolfsson, E.,&McAfee, A. (2012).RaceAgainst theMachine:How theDigital Revolution is Accelerating Innovation,Driving

Productivity,andIrreversiblyTransformingEmploymentandtheEconomy:DigitalFrontierPress.Brynjolfsson,E.,&McAfee,A.(2014).TheSecondMachineAge:Work,Progress,andProsperityinaTimeofBrilliantTechnologies:

W.W.Norton.Freeman,S.,Eddy,S.L.,McDonough,M.,Smith,M.K.,Okoroafor,N.,Jordt,H.,&Wenderoth,M.P.(2014).Activelearningincreases

studentperformanceinscience,engineering,andmathematics.ProceedingsoftheNationalAcademyofSciences,111(23),8410-8415.doi:10.1073/pnas.1319030111

Hermann,M.,Pentek,T.,&Otto,B.(2016,5-8Jan.2016).DesignPrinciplesforIndustrie4.0Scenarios.Paperpresentedatthe201649thHawaiiInternationalConferenceonSystemSciences(HICSS)(pp.3928-3937).

Kagermann,H.,Wahlster,W.,&Helbig,J.(2013).RecommendationsforImplementingtheStrategicInitiativeINDUSTRIE4.0.Berlin:Industrie4.0WorkingGroupofAcatech.

Porter, M. E., & Heppelmann, J. E. (2015). How Smart, Connected Products Are Transforming Companies. Harvard BusinessReview(October),96-114.

Prince,M.(2004).DoesActiveLearningWork?AreviewoftheResearch.JournalofEngineeringEducation,93(3),223-231.Prince, M. (2011). Active/Cooperative Learning. In Retrieved from

https://www.asee.org/documents/conferences/annual/2011/plenary-michael-prince.pdfRüßmann,M.,Lorenz,M.,Gerbert,P.,Waldner,M.,Justus,J.,Engel,P.,&Harnisch,M.(2015).Industry4.0TheFutureofProductivity

and Growth in Manufacturing. In Retrieved from https://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf

Schwab, K. (2016). The Fourth Industrial Revolution: what it means, how to respond. Retrieved on 2018/11/28 fromhttps://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/

Schwab,K.(2017).TheFourthIndustrialRevolution:PenguinBooksLimited.WEF.(2016,20-23January2016).WorldEconomicForumAnnualMeeting2016:MasteringtheFourthIndustrialRevolution.Paper

presentedattheWorldEconomicForumAnnualMeeting,Davos-Klosters,Switzerland.WEF.(2017).RealizingHumanPotentialintheFourthIndustrialRevolution:AnAgendaforLeaderstoShapetheFutureofEducation,

GenderandWork(WhitePaper).Retrievedfromhttp://www3.weforum.org/docs/WEF_EGW_Whitepaper.pdf