WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

62
IMPACTS ON PHYSICAL AND CHEMICAL PROPERTIES OF A STORM FROM THE TROPICAL- VS-MID-LATITUDE CONTRAST IN INSTABILITY AND HUMIDITY OF THE ENVIRONMENT V.Spiridonov 1 and M.Curic 2 1 Hydrometeorological Institute Skopje, Macedonia, 2 Department of Meteorology, Faculty of Physics, Belgrade Serbia WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

description

WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009. IMPACTS ON PHYSICAL AND CHEMICAL PROPERTIES OF A STORM FROM THE TROPICAL-VS-MID-LATITUDE CONTRAST IN INSTABILITY AND HUMIDITY OF THE ENVIRONMENT V.Spiridonov 1 and M.Curic 2 - PowerPoint PPT Presentation

Transcript of WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

Page 1: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

IMPACTS ON PHYSICAL AND CHEMICAL PROPERTIES OF A STORM FROM THE TROPICAL-

VS-MID-LATITUDE CONTRAST IN INSTABILITY AND HUMIDITY OF THE ENVIRONMENT

V.Spiridonov1 and M.Curic2

1 Hydrometeorological Institute Skopje, Macedonia, 2Department of Meteorology, Faculty of Physics, Belgrade Serbia

WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

Page 2: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

The convective cloud model is a three-dimensional, non-hydrostatic, time-dependant, compressible system using the dynamic scheme from Klemp and Wilhelmson (1978).

The thermodynamic energy equation is based on Orville and Kopp (1977) with effects of the snow field added.

Bulk water parameterizations are used for simulation of microphysical processes with detailed scheme from Lin et al. (1983) with a significant improvement proposed by Curic and Janc (1995, 1997).

It takes into account 6 water variables (water vapor, cloud droplets, ice crystals, rain, snow, and graupel).

The graupel hydrometeor class is represented as hail with a density of 0.9 g cm-3.

The equivalent radar reflectivity factors for hail, rain are computed by using equations from Smith et al., (1975) and empirical equation for snow by Sekhon and Srivistava (1970).

MODEL FRAMEWORK

Page 3: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

MODEL CHEMISTRY The chemistry module includes 4 species (SO2, SO42-, NH4+, H2O2) and

3 aqueous-phase reactions describing in-cloud sulfate chemistry (Taylor, 1989).

While the mass of aerosol sulfate is predicted, the aerosols do not affect the cloud drop activation. The absorption of chemical species from the gas phase into cloud water and rainwater is determined by either Henry’s law equilibrium (Taylor, 1989), or by diffusion-limited mass transfer between gas and liquid phases to include possible non-equilibrium states, (Barth et al., 2001).

All equilibrium constants and oxidation reactions are temperature dependent according to the van’t-Hoff relation (Seinfeld, 1986). Cloud water and rainwater pH is calculated using the charge balance equation from Taylor (1989).

The model includes a freezing transport mechanism of chemical species based on Rutledge et al. (1986). Thus, when water from one hydrometeor class is transferred to another, the dissolved scalar is transferred to the destination hydrometeor in proportion to the water mass that was transferred. More detailed information’s regarding the hydrodynamic equations, microphysics equations, turbulent closure, chemistry parameterizations and numerical methods could be found in Telenta and Aleksic (1988) and (Spiridonov and Curic, 2003; 2005).

Page 4: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1. A THREE-DIMENSIONAL

2. NON-HYDROSTATIC

3. CLOUD RESOLVING

4. COMMPRESIBLE

5. TIME-DEPENDANT

MODEL CONCEPT

Page 5: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.DYNAMICS AND THERMODYNAMICS

2. TURBULENCE

3. MICROPHYSICS

4. CHEMISTRY

5.BOUNDARY CONDITIONS, NUMERICAL

TECHNIQUES AND INITIALIZATION

MODEL FRAMEWORK

Page 6: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1. KLEMP AND WILHELMSON (1978)

2.The momentum equations are derived from

Navier-Stokes equations with the aid

3.of moist equation of state

4.Non-dimensional pressure (Exner function)

5.

DYNAMICS

(1) )υ0,608qT(1dρRp

(2) υ/cd

R)υρθ

0p

dR(p/c

dR

)0

pp(Π

(3) )()'608.00

'('0dtd

uFxkfvqcqvqpc

Page 7: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1. DERIVED BY TAKING SUBSTANTIAL DERIVATIVE OF EQ. (2) USING

2.COMPRESSIBLE CONTINUITY EQUATION

3.

4.

THE PRESSURE EQUATION

(4) ''ju'ρ'jxjuρ

jxtρ

(5) πDdt

υdθ2

υθpc

2c

jxju

υcπdR

jxπ

ju)juυθρ(jx2

υθρpc

2ctπ

To eliminate d/dt, and thermodynamic equation to eliminate d/dt.

The final equationhas the following form:

Page 8: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.The potential temperature is used as a

Conservative variable for adiabatic processes

2. The flux-conserving form of the equation is:

3.

4.

’ is specific entropy of moist air;

Kh heat eddy coefficient

THERMODYNAMIC EQUATION

CW00

WSMLTGMLT0

00

Wsg

00P

fh [q

T

c)P)(PT(T

T

c)'P'(P

Tc

L'K'

t

'

(6) T] )Uk(qT)Uk(qTδ[qTc

cT])Uk(q SSGGCI

00P

IRR

Page 9: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

SUB-GRID SCALE PARAMETERIZATION BASED ON THE SOLUTION OF THE TURBULENT

KINETIC ENERGY (TKE ), DERIVED FROM:

2.

MOMENTUM EQUATION (3), FOR INCOMPRESSIBLE FLUID (=const), PERFORMING REYNOLDS AVERAGING ON EACH PROGNOSTIC VARIABLES AND APPLYING FIRST-ORDER CLOSURE TO NEARLY CONSERVATIVE VARIABLES

3.

4. Subgrid-scale kinetic energy per unit mass

THE SUBGRID SCALE PROCESSES

(8) 2)'i(21E u

(7) 23

)/()(jxi'j'u)'Cq''V0,608q

0

''('tE ElDC

jxE

mKjx

iugdd

θθδ

Page 10: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.BUOYANCY

2.SHEAR

3.

DIFFUSSION

4.

DISSIPATION

5.

’ deviation of vertical velocity ,CD=0.2 empirical value; l=(xyz)1/3 is the appropriate length

TKE TERMS R.H.S. EQ. (7)

)'Cq''V0,608q0

''(' θθδ g

jxi'j'u

iu

)(jxE

mKjx

23

)/( ElDC

Page 11: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.Bulk cloud microphysics scheme from Lin

et al. (1983)

2.6 water variables (water vapor, cloud droplets, ice crystals, rain, snow and

graupel)

3.Cloud water and cloud ice are assumed to

be monodisperse, with zero terminal velocities

4.Cloud droplets mass: Mw=4.19x10-9

Cloud crystal mass: Mi=4.19x10-10

5.Rain, hail and snow have Marshall-Palmer type size distributions with fixed intercept

parameters

CLOUD MICROPHYSICS

4cm2-10x 30Sn and 4-cm 4-10x 40Hn ;4-cm 2-10x 80Rn

Page 12: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.Density of rain, hail and snow are:

(1g cm-3; 0.9 g cm-3; 0.1 g cm-3)

2.The density of air is separately calculated

3.These six forms of water substances

interact mutually

4. Four continuity equations for the water substances

MICROPHYSICS PARAMETERIZATIONS

The equivalent radar reflectivity factors for hail and rain are computed on the equations given by

Smith et al., (1975) and empirical equation for snow by Sekhon and Srivistava (1970)

5.

Page 13: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

2.

3.

4.

5.where

Are the mixing ratios for cloud water, cloud ice, rain, hail and snow and water vapor, respectively

MICROPHYSICS (CONTINUE)

(9) GPSPRPqhKqtq

(10) RqR(Uzρ

1RPRqmKRq

tRq

ρ)

(11) GqG(Uzρ

1GPGqmKGq

tGq

ρ)

(12)SqS(Uzρ

1SPSqmKSq

tSq

ρ)

CIqCWqrq r and Sq ,Gq ,Rq,CIq ,CWq

Page 14: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

Kh is the eddy heat diffusion coefficient

Km is the eddy momentum diffusion coefficient

2.UR, UG and US are terminal velocities for rain,

graupel and snow;

PR, PG and PS are production terms

3. Allow coexistence of cloud water and cloud ice in the temperature region of - 40C to 0C

Hsie et al. (1980) 4.

Condensation and deposition of water vapor produce, cloud water and cloud ice, respectively

5. Conversly, evaporation and sublimation of cloud water and cloud ice maintain saturation

MICROPHYSICS (CONTINUE)

Page 15: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.Natural cloud ice is initiated by using a Fletcher-

type equation for the ice nuclei number concentration

2.Bergeron-Findeisen process transforms some of cloud water into cloud ice, and both into snow

3.Rain is produced by the autoconversion of cloud

water, melting of snow and hail, and shedding during wet growth of hail

4.Hail is produced by the auto-conversion of

snow, interaction of cloud ice and snow with rain, and by immersion freezing of rain

5.

Snow may by produced by the auto-conversion, Bergeron-Findeisen growth of cloud ice, and

interaction of cloud ice and rain

MICROPHYSICS (CONTINUE)

All types of precipitation elements grow by different forms of accretion

Page 16: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1. Model chemistry is formulated in terms of continuity equations

2.

3.

4.

5.

MODEL CHEMISTRY

(14) , ri,Sq

ri,SM

ri,E

ri,SF

tri,

q

riq

(15) g_hi,Sqg_hi,SMg_hi,Eg_hi,SF_,tg_hi,

q

hgiq

(16) si,

Sqsi,

SMsi,

Esi,

SFsi,

qtsi,

q

(13) 3 2, 1,i ,,

ai,Sq

ai,SM

ai,E

tai,

q

aiq

concentration of the i-th pollutant expressed through mixing ratio in the air, cloud water and cloud ice by ( ) rain( ), graupel or hail ( ) and snow ( )

ai,q

ri,q

g_hi,q

si,q

6.

Page 17: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.SUBGRID CONTRIBUTION

2.REDISTRIBUTION TERMS INDUCED BY MICROPHYSICS CONVERSION PROCESSES

3.

GIVEN BY (17)

WHERE IS THE RATE OF MICROPHYSICS TRANSFORMATION DERIVED FROM MIC.SCHEME

4.CHEMICAL TRANSFORMATIONS TERMS

5.FALLOUT TERMS

(18)

MODEL CHEMISTRY

si,E and g_hi,E ,ri,E ,ci,E ,ai,E

si,SM and g_hi,SM ,ri,SM ,ai,

SM

wi)/q(wmqwi,

qwi,

SM

i)(wmq

si,Sq and g_hi,Sq ,ri,Sq ,ai,

Sq

)sg_h,r,i,

qsg_h,r,

Uρ(3

xρρ1

sg_h,r,i,SF

During transformation water “w” is considered to lose mass while “i” to gain

mass

Page 18: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

Absorption of gas phase is determined:

a) Equilibrium according to Henry’s law;

b) Mass transfer limitation calculation

2.

Gases, (with an effective Henrys law constant

3.

4.

These liquid-phase concentrations of each chemical component (i) are calculated according to Henry’s law; i.e.

Where [i] is in mol i/L H2O (M); KH Henry’s law coefficient (M atm-1); pi partial pressure of the

Species “i” given in units atm.

MASS TRANSFER BETWEEN GAS AND LIQUID PHASES

1-atm 3-dm mol 310*HK

in cloud water and rain are assumed to be in equilibrium with the local gas-phase concentrations

(19) ip H]i[ K

Page 19: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

All equilibrium constants and oxidation reactions are temperature dependent

according to van’t-Hoff’s relation

2.where H increase of enthalpy induced

by chemical reactions, KT0 is the equilibrium constant at standard temperature and R

3.

4.

However, a chemical species not attain equilibrium on the time scale of cloud model due to the slow mass transfer between phases. In that case a fully kinetic calculation of gas dissolution in cloud drops and

raindrops is applied in the model

5.

MASS TRANSFER BETWEEN GAS AND LIQUID PHASES

(20)01/TΔH/R(1/Texp(T0KTK )

(21) )*

HKαi,d,

q

iPαNα(V

2RTαiSh,

Nig,12η2

dtai,d,

dq

Where qd,i,a is the rate of molar mixing ratio of gas

species inside dropswith diameter to that in the air; KH* effective Henrys’s law coefficient; Dg,I diffusivity of gases “i”, P partial pressure; Nsh,i mass ventilation index; factor as function of Knudsen number; yi sticking coefficient

Page 20: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.After dissolution into cloud water and rain

follows: transfer of a soluble compound through microphysical processes

2.

The present model includes: frezing transport mechanism of chemical species

3.

4.

It is assumed that dissolved compounds are retained during conversion of liquid drops to

frozen hydrometeors

5.During sublimation of hail and snow, dissolved

scalar is retain in the hail or snow unless all hydrometeor mass is converted to gas phase

MASS TRANSFER BETWEEN CLOUD HYDROMETEORS

Melting of ice, snow or hail transfer the dissolved matter to cloud water and rain

Page 21: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

The chemistry module includes sulfate chemistry from (Taylor, 1989) both inside

and outside clouds

2.

The absorbtion of chemical species from the gas phase into cloud water and rain is determined:

Hentry’s law equilibrium (Taylor, 1989), or

Diffusion limited mass transfer (Barth et al., 2001)

3.

4.

Equilibrium constants and oxidation reactions are temperature dependent, van’t-Hoff relation

(Seifeld, 1986)

5.

SULFATE CHEMISTRY PARAMETERIZATION

The model includes a freezing transport mechanizm of chemical species (Rutledge et al. 1986); i.e. water from one hydrometeor class is

transferred another,

The dissolved chemical scalar is tranaferred to the destination hydrometeor in proportion to the water

mass that was transferred

Page 22: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

SCHEMATIC OF MICROPHYSICS AND CHEMISTRY-RELATED CONVERSIONS FOR SO4 -2 IN AIR AND IN

DIFFERENT WATER CATEGORIES

Fig. 1.

S(IV) CLOUD WATER

EXPLICIT FIELD

S(IV) RAIN

EXPLICIT FIELD

SO4 ¯² RAIN

SO4 ¯² GRAUPEL or

HAIL

SO4 ¯² CLOUD WATER

SO4 ¯² SNOW

SO4 ¯² AEROSOL

SO4 ¯² CLOUD ICE

PRECIPITATION ON THE GROUND

SO2 G A S

OXIDATION

PS 1

(SU

L1)

PS 2

PS 5

(SU

L15

)

OXIDATION

PS 9

PS 1

0

P

S 15

PS

3

P

S 4

PS5

PS26

PS 24

PS14

PS 6

PS 8

PS 13

PS 12

PS 20

PS 16

PS 2

5

PS 2

2

PS 7

PS 17

PS 18

PS 2

1

PS 2

3

PS 1

9

PS 1

1

Page 23: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

SCHEMATIC OF MICROPHYSICS- AND SCHEMATIC OF MICROPHYSICS- AND CHEMISTRY-RELATED CONVERSIONS FOR CHEMISTRY-RELATED CONVERSIONS FOR HH2OO2, SO, SO22 AND O AND O33 IN AIR AND IN DIFFERENT IN AIR AND IN DIFFERENT

WATER CARRIERSWATER CARRIERSFig.2

PH6, OHP6, SUL 6

PH15, OHP15, SUL15

S(IV) H2O2 O3

CLOUD WATER

S(IV) H2O2 O3

RAIN RAIN

SO2

H2O2 O3

GRAUPEL or HAIL

SO2 H2O2 O3

SNOW

SO2 H2O2 O3

CLOUD ICE

SO2 H2O2

O3 G GASES

PH17, OHP17, SUL 17

PH5, OHP5, SUL5

PH 1 (PH1K), OHP1, SUL1

PH 16 (PH16K), OHP 16, SUL16

PH 9, OHP 9, SUL 9 PH 18, OHP18, SUL 18

PH4, OHP4, SUL 4

PH14, OHP14, SUL14

PH8, OHP8, SUL8

PH3, OHP3,SUL3

PH7, OHP7, SUL7

PH21

, OH

P21,

SU

L21

P

H13

, OH

P13

,SU

L13

PH2,

OH

P2, S

UL

2

PH

11, O

HP

11, S

UL

11

PH20

, OH

P20,

SU

L20

PH12

, O

HP1

2, S

UL

12

PH19, OHP19, SUL19

PH10, OHP10, SUL10

Page 24: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

Cloud water and rainwater pH is calculated using the charge balance equation from (Taylor,

1989)

SULFATE CHEMISTRY PARAMETERIZATION

}0.5)W4K2

SOp*

H4K2])4

[NH]24

((2[SO]4

[NH]24

0.5{2[SO][H

Table 1. Contents of Chemical Species Groups in the Model Group ______________________________________________________________

Group Gaseous Phase Aqueous or Solid Phase S(IV) SO2 SO2, HSO3

-,SO3=

S(VI) - H2SO4, HSO4-,SO4

= C(IV) CO2 CO2,HCO3

-,CO3=

NH3 NH3 NH4OH, NH4+

H2O2 H2O2 H2O2 O3 O3 O3 N(V) HNO3 HNO3, NO3

-

_____________________________________________________________________

Table 3. S(IV) Oxidations and the Corresponding Coefficients ___________________________________________________________________________________

No. Reaction )sM(K 1n298

)K(R/H298 References

9 S(IV) + O3 S(VI) + O2 510x7.3 -5530 Hoffman and Calvert (1985)

10 S(IV) + H2O2 S(VI) + H2O 710x5.7 -4751 Hoffman and Calvert (1985) ___________________________________________________________________________________

Page 25: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

Table 2. Equilibrium Reactions and rate coefficients

No. Reactions )MorMatm(K 1298

)K(R/H298 References

1 )aq(SO)g(SO 22 1.2 -3135 Hoffman & Calvert (1985)

2 HHSO)aq(SO 32 210x3.1 -2000 Hoffman & Calvert (1985)

3 HSOHSO 233 810x3.6 -1495 Hoffman & Calvert (1985)

4 )aq(OH)g(OH 2222 410x1.7 -6800 Martin & Damschen (1981)

5 )()( 22 aqCOgCO 210x4.3 -2440 Pandis & Seinfeld (1989)

6 )()( 33 aqHNOgHNO 5101.2 x -6710 Pandis & Seinfeld (1989)

7 )()( 33 aqOgO 21013.1 x -2300 Pandis & Seinfeld (1989)

8. )()( 43 aqOHNHgNH 2100.2 x -3402 Graedel & Weschler (1981)

9 OH 14w 10x0.1K

_____________________________________________________________________

Table 4. Initial concentrations for chemical species at the lowest model level; H is

the scale height; o(k) is the air density at each vertical level. Chemical species q(0) H (km) ---------------------------------------------------------------------------------------------------

CSO2 21.0 )]air(gkg[ 1 3.0

24SO

C 16.0 - 3.5

4NHC 3.0 - 3.5

CH2O2 0.59 - CHNO3 1.0 ppb 3.0 CNH3 1.0 ppb 3.0 CO3 50.0 ppb CCO2 330 ppm

---------------------------------------------------------------------------------------------------

Page 26: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

Boundary conditions are specified along all sides of the integration domain since the

computations take place within a finite model domain

2.Along the bottom of the model domain the

normal velocity w is set to zero

3.The open top boundary condition is applied in the model in order to eliminate strong internal

gravity waves (Klemp and Durran, 1983)

4.The lateral boundaries are open and time-dependant, so that disturbances can pass

through with minimal reflection

5.Two different cases with regard to the wind velocity are considered, after Durran [1981]

BOUNDARY CONDITIONS

Page 27: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

When the velocity component normal to the boundary is directed inside the domain (inflow boundary), normal derivatives are set to zero

2.

At outflow boundaries, the normal velocity component is advected out through the

boundary with an estimated propagation speed which is averaged in the vertical, and weighted at each level by the approximate local amplitude of

the wave

3.Boundary conditions for the pressure are calculated from other boundary values to

maintain consistency

BOUNDARY CONDITIONS

Page 28: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.Model equations are solved on a standard

spatially staggered grid

2.

All velocity components are defined at one-half grid interval , while scalar variables are defined

at the mid point of each grid

3.

The horizontal and vertical advection terms are calculated by centered fourth- and second-order

differences, respectively

4.

Since the model equations are compressible, a time splitting procedure is applied to achieve

numerical efficiency

5.

With this procedure the sound wave terms are solved separately using a smaller time step, while all other processes are treated with a larger time step , which is appropriate to the time scales of

physical interest.

NUMERICAL TECHNIQUES

Page 29: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.

The scalar prognostic equations, except the pressure equation, are solved from t-t to t+t by a single leap-frog

step

2.

The terms which are not responsible for sound wave generation in the equations of motion and the pressure

equation, are evaluated at the central time level t

3.

Wind and pressure prognostic variables are stepped forward from t-t to t+t with forward time differencing with

the small time step

4.

In grid points adjacent to lateral boundaries, the normal horizontal advection terms are approximated using second-

order differences instead of the fourth-order ones used elsewhere

5.

At lateral boundaries the normal derivatives for all prognostic variables are calculated with first-order accuracy,

through one-sided differences lagged at time to provide stability

NUMERICAL TECHNIQUES

Page 30: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.The model chemistry also included the time splitting

procedure, using ratios of the time step n1, n2, n3, n4 and n5 of a given process (e.g., advection, subgrid scale,

microphysical, the dissociation, oxidation or other aqueous phase reaction term) to the base time step Dt, Wang and

Chang (1993a)

2.

3.

The advection scheme for chemicals is mainly based on Bott (1989), using nonoscillatory method by Smolarkiewicz

and Grabowski (1990)

More detailed information about the cloud model and the chemistry submodels could be found in studies by Telenta

and Aleksic (1988) and Spiridonov and Curic (2003,2005,2006)

NUMERICAL TECHNIQUES-CHEMISTRY

Page 31: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

1.Initial impulse for convection is an ellipsoidal warm bubble

of the form

2.for

3. where

4. Here, the subscript c refers to the location of the center of the perturbation

5. While x*, y*, z* are radial dimensions of the bubble

MODEL INITIALIZATION

β2π2cos0ΔTΔT 1β

21

]2)zczz

(2)ycyy

(2)xcxx

[(β

Page 32: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THE MAIN MOTIVATION OF THE STUDY

CONVECTIVE PROCESSING OF TRACE GAS SPECIES AND AEROSOLS IS AN IMPORTANT MEANS OF MOVING CHEMICAL CONSTITUENTS RAPIDLY BETWEEN THE BOUNDARY LAYER AND FREE TROPOSPHERE, AND IS ALSO AN EFFECTIVE WAY OF CLEANSING THE ATMOSPHERE THROUGH WET DEPOSITION.

BECAUSE OF THESE TWO PROCESSES, THE EFFECT OF CONVECTION ON CHEMICAL SPECIES AND AEROSOLS IS CRITICAL TO OUR UNDERSTANDING OF CHEMISTRY-CLIMATE STUDIES, AIR QUALITY STUDIES, AND THE EFFECTS OF ACIDIC PRECIPITATION ON THE EARTH'S SURFACE.

IT IS INTERESTING TO STUDY THE IMPACTS ON PHYSICAL AND CHEMICAL PROPERTIES OF CONVECTIVE CLOUDS FROM THE TROPICAL-VS-MID-LATITUDE CONTRAST IN INSTABILITY AND HUMIDITY OF THE ENVIRONMENT.

IT IS ALSO IMPORTANT TO ANALYSE THE RELATIVE IMPORTANCE OF SCAVENGING, OXIDATION AND ICE PHASE PROCESSES IN SULFATE PRODUCTION AND WET REMOVAL IN SUCH TYPE OF CLOUDS.

Page 33: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

MODEL INITIALIZATION

Continental environemnt Tropical environment

Page 34: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

STATION INFORMATION / THERMODYNAMIC PARAMETER

CONTINENTAL CASE

Station number: Wyoming-72672

TROPICAL CASE Station number: Bangkok-48455

Observation time 070725/0000 960710/0000 Station latitude 13.73 43.06 Station longitude 100.57 -108.48 Station elevation 4.0 1703.0 Showalter index 1.10 Lifted index -2.26 -0.50 LIFT computed using virtual temperature -2.76 -0.72 SWEAT index 177.60 K index 28.30 Cross totals index 18.50 Vertical totals index 24.50 Totals totals index 43.00 Convective Available Potential Energy 749.13 49.80 CAPE using virtual temperature 878.78 Convective Inhibition -142.75 CINS using virtual temperature -86.44 -54.09 Equilibrum Level 216.33 437.46 Equilibrum Level using virtual temperature 215.67 Level of Free Convection 669.79 592.39 LFCT using virtual temperature 726.35 598.21 Bulk Richardson Number 303.12 2.03 Bulk Richardson Number using CAPV 355.58 2.84 Temp [K] of the Lifted Condensation Level 293.72 274.90 Pres [hPa] of the Lifted Condensation Level 913.15 638.44 Mean mixed layer potential temperature 301.47 312.51 Mean mixed layer mixing ratio 17.04 6.86 1000 hPa to 500 hPa thickness 5794.00 5768.00 Precipitable water [mm] for entire sounding 51.88 17.95

THERMODYNAMIC PARAMETERS

Page 35: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

INITIALIZATION OF CHEMICAL SPECIESINCLUDED IN SULFATE PRODUCTION

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20

Hei

gh

t (k

m)

0

5

10

15

20

0 2 4 6 8 10 12 14 16

Heig

ht (k

m)

0

5

10

15

20

0,0 0,5 1,0 1,5 2,0 2,5 3,0

Heig

ht (k

m)

0

24

68

10

1214

1618

20

0,00 0,50 1,00 1,50 2,00 2,50 3,00

H2O2 (ppbv)

Hei

ght (

km, m

.s.l.

)

0

24

68

10

1214

1618

20

0 100 200 300 400 500 600

O3 (ppbv)

Hei

ght (

km, m

.s.l.

)

Page 36: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

PHYSICAL PROPERTIES OF CLOUDSMaximum updrafts as a function of the simulation time in a

mid-latitude and tropical run

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

wm

ax (

m/s

)

wmax (mid-lat)

wmax (trop)

Turbulent diffusion coefficient

0

500

1000

1500

10 20 30 40 50 60 70 80 9010011

012

0

Simulation time (min)

(m**

2/s

)

Mid.-lat

Trop.

Page 37: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

MICROPHYSICAL PROPERTIES OF CLOUDS

Maximum hydrometeor mixing ratios as a function of the simulation time (mid-latitude run)

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

mix

ing

rat

io (

g/k

g)

cloud w ater

cloud ice

rainw ater

graupel or hail

snow

Maximum hydrometeor mixing ratios as a function of the simulation

time (tropical run)

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

mix

ing

rati

o (

g/k

g)

cloud w ater

cloud ice

rainw ater

graupel or hail

snow

Page 38: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

RAINFALL AND RADAR REFLECTIVITY

Maximum reflectivity and accumulated rainfall as a function

of the simulation time

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

Ref

lect

ivity

(dB

z) r

ainf

all (

mm

) ref. (mid-lat)

ref. (trop)

Rainfall (mid-lat)

Rainfall (trop)

Page 39: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

DISTRIBUTION OF CHEMICALS

Time distribution of sulfur dioxide mixing ratios in condensate phase

0

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

SO2(trop)

SO2(mid-lat)

)/( 3mg

Time distribution of hydrogen peroxide mixing ratios in condensate phase

0

0,5

1

1,5

2

2,5

0 10 20 30 40 50 60 70 80 90 100 110 120simulation time (min.)

H2O2(trop)

H2O2(mid-at)

)/( 3mgTime distribution of ozone mixing ratios

in condensate phase

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

O3 (trop)

O3(mid-lat)

)/( 3mg

Time distribution of sulfate aerosol mixing ratios in condensate phase

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

Mid-lat.

Tropical

)/( 3mg

Page 40: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

pH-FACTOR

Cloud water ph (non-polluted background)

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

ph

Trop.

Cont.

Rain water ph (non-polluted background)

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

ph Trop_non

Cont_non

Rain water ph (polluted background)

1

1,5

2

2,5

3

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

ph Trop_pol

Cont_pol

Cloud water ph (polluted background)

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100 110 120

simulation time (min.)

ph

Trop.

Cont.

Page 41: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THE MEAN TRANSFER RATES OF THE MICROPHYSICAL PROCESSES AVERAGED OVER 2

H SIMULATION PERIOD

___________________________________________________________________________Term QRR (kg kg-1s-1 ) Term CLCW (kg kg-1s-1 ) Term CLCI (kg kg-1s-1 ) Continental Tropical Continental Tropical Continental Tropical ---------------------------------------------------------------------------------------------------------------------------------------

PSDEP -0610 6.8 -0510 2.1 PRAUT -0610 3.4 -0610 3.0 PSAUT -0710 3.0 -0710 1.1 PRACW -1310 1.1 -1310 8.4 PSACI

-0610 7.9 -0610 5.9 PSACW -0410 1.5 -0410 1.3 PRACI

-1710 7.4 -1810 2.7 PGACW -0410 1.2 -0410 1.4 PSFI

-0610 9.6 -0610 7.7 PSFW -1010 2.9 -910 4.5 PGACI

-0710 5.2 -0710 4.2 PGACIP -0610 5.2 -0610 4.2 ---------------------------------------------------------------------------------------------------------------- Term RA1 (kg kg-1s-1 ) Term SN1 (kg kg-1s-1 ) Term HA1 (kg kg-1s-1 ) Continental Tropical Continental Tropical Continental Tropical ---------------------------------------------------------------------------------------------------------------------------------------

PREVP -0510 6.7- -0510 8.4- PSMLT -0710 2.4 -0610 2.2 PGMLT -0410 7.1 -0410 9.1 PIACR -0610 6.1 -0610 6.8 PGAUT -0610 3.1 -0610 0.1 PGSUB -0610 6.5 -0610 1.1 PSACR -0510 9.1 -0510 0.5 PRACS -0510 7.8 -0510 4.6 PGWET -0310 1.2 -0310 3.1 PGFR -06101.0 -07104.8 PSSUB -0510 5.1 -0610 7.4 PGDRY -0410 6.2 -0410 1.3 PGACR

-0510 9.0 -0410 1.1 PGACS -0510 2.5 -0510 5.5 PGACRP -510 5.1 -0510 1.4- PGACSP -0410 6.3 -0410 7.2 ___________________________________________________________________________

Page 42: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THE MEAN CHEMICAL CONVERSION RATES OF SULFATE (KG KG-1 S-1) AVERAGED OVER 2H

SIMULATION PERIOD (POLLUTED BACKGROUND) ------------------------------------------------------------------------------------------------------------Term Continental Tropical Term Continental Tropical Term Continental Tropical ------------------------------------------------------------------------------------------------------------ PS1 -1510 1.4 -1510 8.1 PS10 -1910 7.7 -1610 6.1 PS19 -1310 1.1 -1410 7.4 PS2 -0810 9.3 -0810 1.1 PS11 -2510 1.4 -2410 7.2 PS20 -2210 3.2 -2210 4.2 PS3 -0810 1.1 -0810 4.1 PS12 -1410 2.1 -1310 4.1 PS21 -1510 7.6 -1510 7.1 PS4 -1110 3.8 -1110 6.8 PS13 -1410 7.1 -1210 3.4 PS22 -2610 8.2 -2510 8.1 PS5 -1110 8.1 -1110 6.1 PS14 -1510 1.2 -1610 3.9 PS23 -2510 2.1 -2410 0.3 PS6 -1110 8.2 -1310 4.0 PS15 -1410 8.4 -1410 0.4 PS24 -2710 1.2 -2710 9.2 PS7 -1210 7.6 -1110 4.0 PS16 -1610 7.3 -1510 4.1 PS25 -1510 5.3 -1510 9.6 PS8 -1210 7.6 -1210 9.0 PS17 -1410 1.3 -1410 7.1 PS26 -1810 0.1 -2010 4.7 PS9 -0810 3.1 -0910 0.2 PS18 -1710 7.2 17--10 5.1 ________________________________________________________________________

Page 43: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THE MEAN CHEMICAL CONVERSION RATES OF SULFATE (KG KG-1 S-1) AVERAGED OVER 2 H SIM.

PERIOD (NON-POLLUTED BACKGROUND) ------------------------------------------------------------------------------------------------------------Term Continental Tropical Term Continental Tropical Term Continental Tropical ------------------------------------------------------------------------------------------------------------ PS1 -1610 9.3 -1610 6.3 PS10 -1810 4.9 -2010 6.8 PS19 -1410 1.2 -1510 1.9 PS2 -0910 3.8 -0910 4.2 PS11 -2610 0.2 -2510 3.5 PS20 -2310 4.4 -2310 6.4 PS3 -0910 0.2 -0910 0.3 PS12 -1510 5.6 -1210 8.2 PS21 -1510 2.1 -1510 1.9 PS4 -1110 6.1 -1110 7.1 PS13 -1210 2.1 -1510 3.2 PS22 -2710 4.5 -2510 6.3 PS5 -1210 4.3 -1210 1.3 PS14 -1610 0.4 -1610 8.1 PS23 -2610 4.2 -2510 9.5 PS6 -1110 1.1 -1210 8.4 PS15 -1510 3.9 -1510 5.7 PS24 -2810 1.4 -2810 6.5 PS7 -1210 2.2 -1510 9.2 PS16 -1710 2.7 -1610 6.2 PS25 -1610 7.6 -1510 3.1 PS8 -1210 1.2 -1510 9.2 PS17 -1510 9.5 -1510 4.3 PS26 -1910 4.1 -2310 4.1 PS9 -0910 2.1 -0910 9.4 PS18 -1810 3.5 18--10 9.2 ________________________________________________________________________

Page 44: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

SULFUR INTEGRATED CLOUD BASE FLUX AND PRECIPITATION MASS

Non-polluted background Polluted background --------------------------------------------------------------------------- ----------------------------

Sulfur (kg) Continental Tropical Continental Tropical

Base run Cloudbase (CB) 201.12 213.99 760.16 960.48 Precipitation (P) 12.35 13.74 36.25 49.83 P/CB 0.061 0.064 0.048 0.052 (%)

Absorbtion-Kinetic method off Cloudbase (CB) 214.40 238.54 921.88 1082.85 Precipitation (P) 13.86 15.12 54.80 65.39 P/CB 0.064 0.063 0.059 0.064

In-cloud scavenging off Cloudbase (CB) 200.13 172.07 701.86 886.74 Precipitation (P) 9.51 9.38 24.51 32.59 P/CB 0.048 0.054 0.035 0.047

Subcloud scavenging off Cloudbase (CB) 197.78 172.16 698.75 884.27 Precipitation (P) 10.56 12 .02 29.23 40.16 P/CB 0.053 0.069 0.042 0.045

In-cloud oxidation off Cloudbase (CB) 180.32 172.22 704.96 902.55 Precipitation (P) 7.24 11.28 19.58 28.48 P/CB 0.040 0.065 0.029 0.033

Subcloud oxidation off Cloudbase (CB) 161.24 178.35 705.11 889.80 Precipitation (P) 9.77 9.32 23.75 37.97 P/CB 0.060 0.052 0.034 0.043

Aqueous simulation of ice phase off Cloudbase (CB) 179.30 172.40 695.85 881.55 Precipitation (P) 7.71 7.57 21.89 30.81 P/CB 0.043 0.044 0.031 0.035

Page 45: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THE REL. CONTRIBUTION IN (%) OF THE TOTAL SULFUR MASS REMOVED BY WET DEPOSITION FOR MID-LATITUDE COTINENTAL AND TROPICAL NON-POLLUTED AND POLLUTED BACKGROUND

Page 46: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

RELATIVE CONTRIBUTION (CONTINUE)

0

20

40

60

80

100

120

140

160

In-cloudscav.

Sub-cloudscav.

In-cloudoxid.

Sub-cloudoxid.

Iceneglect.

Henry'sLaw

(%) c

ontri

butio

n

Mid-latitude

Tropicalcase

overestimate

underestimate

Page 47: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

SULFATE AEROSOL AND CLOUD -TROPICAL CASE

10 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

30 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

40 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

0.1

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

4.6

5.1

5.6

6.1

6.6

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

50 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

70 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

90 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

x (km )

z (k

m)

z (k

m)

z (k

m)

z (k

m)

z (k

m)

z (k

m)

TROPICAL CASE

Page 48: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

CLOUD +SULFATE AEROSOLS (CONT. CASE)10 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

30 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 100

10

20

50 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

70 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 100

10

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

2090 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

z (k

m)

z (k

m)

z (k

m)

z (k

m)

z (k

m)

x (km )

40 m in.

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

10 20 30 40 50 60 70 80 90 1000

5

10

15

20

0.1

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

4.6

5.1

5.6

z (k

m)

M ID-LATITUDE CASE

Page 49: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

COMPARATIVE ANALYSIS RADAR REFLECTIVITY-CONTINENTAL CASE

20 40 60 80 100 120 14006

12

15

25

35

45

55

65

X (KM )

Z (

KM

)

REF (dBz)

X (KM)

Y (KM

)

Z (dBz)

continenta l storm (60 m in)

0 10 20 30 40 50 60 70 80 90 100 110 1200

10

20

30

40

50

60

70

80

90

100

110

120

5

15

25

35

45

55

Page 50: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

COMPARATIVE ANALYSIS RADAR REF. AND RAINFALL-TROPICAL CASE

0 5 10 15 20 25 30 35 40 45 50 55 600

5

10

15

20

25

30

35

40

45

50

55

60

10152025303540455055606570

X (KM)

Y (K

M)

Z (dBz)

0.1

5

10

20

30

40

50

70

90

120

150

200

250

300

400

500Í ÓàÀ Í » Ò¡ à¡ Å ç

Í ÓàÀ Í àÁ ×Í § ¹ ¹ · º ØÃÕÍ ÓàÀ Í º Ò§ ãË è

Í ÓàÀ Í Ê ÒÁ ¾ÃÒ¹

Í ÓàÀ Í ¡ Ãз ØèÁ Ạ¹

Í ÓàÀ Í àÁ ×Í § Ê Á Ø· ÃÊ Ò¤ ÃÍ ÓàÀ Í ¾ÃÐÊ Á Ø· Ãà ´ ÕÂì

Í ÓàÀ Í ¾Ãл ÃÐá´ §

Í ÓàÀ Í àÁ ×Í § ©Ðઠԧ à· ÃÒ

Ë ¹ Í § ¨ Í ¡

Å Ò ¡ Ãк ѧ

Á Õ¹ º ØÃÕ

¤ ÅÍ § Ê ÒÁ ÇÒ

Ê Ð¾Ò¹ Ê Ù§

» ÃÐàÇÈ

º Ò§ ¹ Ò

¾ÃÐ⢠¹ §

Ê Ç¹ Ë Åǧ

º Ò§ ¡ л Ô

º Ö§ ¡ ØèÁ

¤ ѹ ¹ ÒÂÒÇ

º Ò§ ࢠ¹

Ê ÒÂäË Á

´ Í ¹ àÁ ×Í §

Ë ÅÑ¡ Ê Õè

ÅÒ ¾ÃéÒǨ µ ØÑ¡ ú Ò§ « ×èÍ

Çѧ · Í § Ë ÅÒ§¾ Òä·Ë éÇ¢ ÇÒ§

´ ØÊ Ôµ

´ Ô¹ á´ §

» · ØÁ Çѹº Ò§ ÃÑ¡

ÇѲ ¹ Ò

¤ ÅÍ § ൠÂÊ Ò· Ã

ÂÒ¹ ¹ ÒÇÒº Ò§ ¤ Í á Ë ÅÁ

¾Ãй ¤ û éÍ Á » ÃÒº

· ÇÕÇѲ ¹ Ò

º Ò§ á ¤

Ë ¹ Í § ᢠÁ

º Ò§ º Í ¹

º Ò§ ¢ ع à· Õ¹

· Øè§ ¤ ÃØ

µ ÅÔè§ ª ѹ

º Ò§ ¡ Í ¡ ¹ éÍ Â

º Ò§ ¾ÅÑ

º Ò§ ¡ Í ¡ ãË èÀ ÒÉ Õà ÃÔ

¸ ¹ º ØÃÕ

¨ Í Á · Í §

ÃÒÉ ®Ãìº Ùó Ð

Ê Ó¹ Ñ¡ ¾Ñ² ¹ ÒÍ Øµ ع ÔÂÁ ÇÔ· ÂÒ ¡ ÃÁ Í Øµ ع ÔÂÁ ÇÔ· ÂÒ

Accumulate Rainfall (00 Z 25 –00 Z 26 Jul 2007)Max66.5 mm. At Bangkok area

0.1

5

10

20

30

40

50

70

90

120

150

200

250

300

400

500Í ÓàÀ Í » Ò¡ à¡ Å ç

Í ÓàÀ Í àÁ ×Í § ¹ ¹ · º ØÃÕÍ ÓàÀ Í º Ò§ ãË è

Í ÓàÀ Í Ê ÒÁ ¾ÃÒ¹

Í ÓàÀ Í ¡ Ãз ØèÁ Ạ¹

Í ÓàÀ Í àÁ ×Í § Ê Á Ø· ÃÊ Ò¤ ÃÍ ÓàÀ Í ¾ÃÐÊ Á Ø· Ãà ´ ÕÂì

Í ÓàÀ Í ¾Ãл ÃÐá´ §

Í ÓàÀ Í àÁ ×Í § ©Ðઠԧ à· ÃÒ

Ë ¹ Í § ¨ Í ¡

Å Ò ¡ Ãк ѧ

Á Õ¹ º ØÃÕ

¤ ÅÍ § Ê ÒÁ ÇÒ

Ê Ð¾Ò¹ Ê Ù§

» ÃÐàÇÈ

º Ò§ ¹ Ò

¾ÃÐ⢠¹ §

Ê Ç¹ Ë Åǧ

º Ò§ ¡ л Ô

º Ö§ ¡ ØèÁ

¤ ѹ ¹ ÒÂÒÇ

º Ò§ ࢠ¹

Ê ÒÂäË Á

´ Í ¹ àÁ ×Í §

Ë ÅÑ¡ Ê Õè

ÅÒ ¾ÃéÒǨ µ ØÑ¡ ú Ò§ « ×èÍ

Çѧ · Í § Ë ÅÒ§¾ Òä·Ë éÇ¢ ÇÒ§

´ ØÊ Ôµ

´ Ô¹ á´ §

» · ØÁ Çѹº Ò§ ÃÑ¡

ÇѲ ¹ Ò

¤ ÅÍ § ൠÂÊ Ò· Ã

ÂÒ¹ ¹ ÒÇÒº Ò§ ¤ Í á Ë ÅÁ

¾Ãй ¤ û éÍ Á » ÃÒº

· ÇÕÇѲ ¹ Ò

º Ò§ á ¤

Ë ¹ Í § ᢠÁ

º Ò§ º Í ¹

º Ò§ ¢ ع à· Õ¹

· Øè§ ¤ ÃØ

µ ÅÔè§ ª ѹ

º Ò§ ¡ Í ¡ ¹ éÍ Â

º Ò§ ¾ÅÑ

º Ò§ ¡ Í ¡ ãË èÀ ÒÉ Õà ÃÔ

¸ ¹ º ØÃÕ

¨ Í Á · Í §

ÃÒÉ ®Ãìº Ùó Ð

Ê Ó¹ Ñ¡ ¾Ñ² ¹ ÒÍ Øµ ع ÔÂÁ ÇÔ· ÂÒ ¡ ÃÁ Í Øµ ع ÔÂÁ ÇÔ· ÂÒ

Accumulate Rainfall (00 Z 25 –00 Z 26 Jul 2007)Max66.5 mm. At Bangkok area0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

0

4

8

1 2

1 6

2 0

2 4

2 8

3 2

3 6

4 0

4 4

4 8

5 2

5 6

6 0

6 4

6 8

7 2

Page 51: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

X-Z CROSS SECTIONS ON CO, O3 AND NOX (CONTINENTAL CASE)

20 40 60 80 100 120 140048

1216

50

60

70

80

90

100

110

120

130

X (KM)

Z (KM)

CO (ppbv)

20 40 60 80 100 120 140048

1216

40

80

120

160

200

240

280

320

360

400

440

480

520

X (KM)

Z (KM)

O3 (ppbv)

20 40 60 80 100 120 140048

1216

50

100

150

200

250

300

350

400

450

500

550

600

X (KM)

Z (KM

)

NOx (ppt)

Page 52: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

X-Z CROSS SECTIONS ON CO, O3 AND NOX (TROPICAL CASE)

5 10 15 20 25 30 35 40 45 50 55 6002468

10121416

50

60

70

80

90

100

110

120

130

x (km )

z (km)

CO (ppbv)

x (km )

z (k

m)

O3 (ppbv)

5 10 15 20 25 30 35 40 45 50 55 6002468

10121416

40

90

140

190

240

290

340

390

440

490

540

x (km )

z (k

m)

NOx (ppbv)

5 10 15 20 25 30 35 40 45 50 55 6002468

10121416

50

100

150

200

250

300

350

400

450

500

550

Page 53: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

X-Y cross sections on the gas-phase mixing ratios on CO, O3 and NOx

at z = 10.7 km (cont. case- upper panel, trop. case-bottom panel). CO (ppbv) CONTINENTAL CASE X-Y CROSS SECTION AT Z = 10.5 KM

X (KM )

Y (

KM

)

CO (ppbv)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

50556065707580859095100105110115120

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 00

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

5 5

6 5

7 5

8 5

9 5

1 0 5

X ( K M )

C O ( p p b v )

Y ( K M )

C O ( p p b v ) T R O P I C A L C A S E X - Y C R O S S S E C T I O N A T Z = 1 0 . 5 K M

O3 (ppbv) CONTINENTAL CASE X-Y CROSS SECTION AT Z = 10.5 KM

X (KM)

Y (

KM

)

O3 (ppbv)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

55

65

75

85

95

105

115

125

135

145

155

X (KM)

O3 (ppbv)

Y (

KM

)

O3 (ppbv) TROPICAL CASE X-Y CROSS SECTION AT Z = 10.5 KM

0 5 10 15 20 25 30 35 40 45 50 55 600

5

10

15

20

25

30

35

40

45

50

55

60

55

65

75

85

95

105

115

125

135

145

155

165

175

NOx (ppt) CONTINENTAL CASE X-Y CROSS SECTION AT Z = 10.5 KM

X (KM)

Y (

KM

)

NOx (ppt)

0 20 40 60 80 100 120 1400

20

40

60

80

100

120

140

20

60

100

140

180

220

260

X (KM)

NOx (ppt)

Y (

KM

)

NOx (ppt) TROPICAL CASE X - Y CROSS SECTION AT Z = 10.5 KM

0 5 10 15 20 25 30 35 40 45 50 55 600

5

10

15

20

25

30

35

40

45

50

55

60

50

70

90

110

130

150

170

Page 54: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

CLOUD TOGETHER CHEMISTRY CONTINENTAL AND TROPICAL STORM

0

20

40

60

020

40

60

05

1015

05

1015

0

20

40

60

020

40

60

05

1015

05

1015

0

20

40

60

020

40

60

05

1015

05

1015

1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 4 0 . 0 0 5 0 . 0 0 6 0 . 0 0 7 0 . 0 0 8 0 . 0 0 9 0 . 0 0 1 0 0 . 0 0

1 0 . 0 0

2 0 . 0 0

0 . 1

0 . 6

1 . 1

1 . 6

2 . 1

2 . 6

3 . 1

3 . 6

4 . 1

4 . 6

5 . 1

5 . 6

6 . 1

6 . 6

S O 4 ( p p b )

1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 4 0 . 0 0 5 0 . 0 0 6 0 . 0 0 7 0 . 0 0 8 0 . 0 0 9 0 . 0 0 1 0 0 . 0 0

1 0 . 0 0

2 0 . 0 0

0 . 1

0 . 6

1 . 1

1 . 6

2 . 1

2 . 6

3 . 1

3 . 6

4 . 1

S O 2 ( p p b )

1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 4 0 . 0 0 5 0 . 0 0 6 0 . 0 0 7 0 . 0 0 8 0 . 0 0 9 0 . 0 0 1 0 0 . 0 0

1 0 . 0 0

2 0 . 0 0

0 . 1

0 . 3

0 . 5

0 . 7

0 . 9

1 . 1

1 . 3

1 . 5

1 . 7

1 . 9

2 . 1

2 . 3

H 2 O 2 ( p p b ) O3 (ppb)

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

10.00

20.00

5060708090100110120130140150160170180190

Page 55: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THE GENERAL REMARKS AND CONCLUSIONS Tropical storm has shown a more intensive initial convection, associate

with strong updrafts, turbulent diffusion coefficient and low level moisture relative to continental storm

The differences in cloud dynamics belongs to difference in potential instability, wind shear and turbulence

Continental storm exhibits continuous and uniform evolution in the storm mature stage with relatively higher values for turbulence that maintains convection

Predicted maximum mixing ratios of hydrometeors show differences among cases, as result of different initial moisture content as well as difference in vertical transport of moisture and microphysics production terms

The intercomparison described here also shows higher rainfall efficiency in tropical case attributed to differences in the interaction of cloud dynamics and microphysics and precipitation flux processes

The intercomparison described here also shows differences in rainfall efficiency attributed to interaction of cloud dynamics and microphysics

and precipitation flux processes

Page 56: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

Dominant microphysics production terms terms in tropical srtorms and higher value relative to continental case:

PSDEP-depositional growth of snow (1.4) PSFW-Bergeron process transfer of cloud

water to form snow (6 times) PGACR-accretion of rain by graupel (1.2) PSML-snow melting to from rain (5 times)

MICROPHYSICS PRODUCTION TERMS

Page 57: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

MICROPHYSICS PRODUCTION TERMS

Dominant microphysics production terms terms in continental case and higher value relative to tropical case:

PGFR-probablistic freezing of rain to form graupel (2 times) PGAUT-autoconversion of snow to form graupel (1.3= PRACI-accretion of cloud ice by rain (6 times) PSSUB- sublimation of snow (6 times)

Page 58: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

Dominant microphysics production terms terms in tropical srtorms and higher value relative to continental case:

PSDEP-depositional growth of snow (1.4) PSFW-Bergeron process transfer of cloud

water to form snow (6 times) PGACR-accretion of rain by graupel (1.2) PSML-snow melting to from rain (5 times)

MICROPHYSICS PRODUCTION TERMS

Page 59: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

CLOUD WATER AND RAINWATER pH-FACTOR

similar values of cloud water pH in continental and tropical case using non-polluted background shows a

a more uniform distribution of cloud water pH with a lower values compared to tropical case during simulation time using polluted background

Rainwater pH in continental case using non-polluted background has a more uniform distribution and lower values relative to tropical one.

Similar values between rainwater pH betwen continental and tropical case until moderate stage of storm evolution and higher values in tropical case relative to cont, case in dissipative stage

Page 60: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

DOMINANT SULFATE PRODUCTION TERMS

Liquid phase oxidation of SO2 by H2O2 and O3 in cloud droplets and rainwater

Highest production values are found in continental polluted clouds

Maximum production rate of in-cloud nucleation and impact scavenging is simulated in tropical polluted clouds

Page 61: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

RELATIVE CONTRIBUTION TO SULFUR WET DEPOSITION

Hanry Law assumption leads to higher overestimation of sulfur wet deposition of 151 % in cont. polluted clouds

Cont. polluted clouds have shown a higher percentage values relative to tropical case for incloud and sub-cloud oxidation

Ice phase proceses and in-cloud scavenging have a similar percentage contribution values in both cases

Sub-cloud scavenging in tropical polluted clouds has a higher relative contribution to sulfur wet deposition in (kg) compared to continental one

Page 62: WMO-CAS TECHNICAL CONFERENCE, INCHEON, R. KOREA 16-17 NOVEMBER, 2009

THANK YOUTHANK YOU

VLADO SPIRIDONOVHYDROMETEOROLOGICAL

INSTITUTE SKUPI BB 1000 SKOPJE, R.MACEDONIA

E-mail: [email protected]