WK 7 TUTE AnswerSheet

3
Transport Phenomena CHEN 3001 Week 7 tutorial solutions 1. Calculate average h value based on the rate of heat generated by the microchip, T T hA V q s s . Then, assuming that the flow is laminar, we can use the equation for laminar flow over a flat plate, 3 1 5 . 0 Pr Re 664 . 0 Nu . Use the film temperature (Tf = 42.5 deg. C) to evaluate the properties of air: Kinematic viscosity = 17x10^6 m2/s, Pr = 0.705, thermal conductivity = 0.0273 W/m.K. Bulk fluid velocity = 3.95 m/s. Check Reynolds number to see if the flow is indeed laminar! The solution to the boundary layer equations shows that for maximum heat transfer, we want to have the thinnest boundary layer over the surface of the chip. To minimise the boundary layer thickness and maximum the heat transfer coefficient, we want to orient the short dimension of the chip parallel to the flow. 2. Q = Heat transfer rate = Heat flux x surface area =5.7x10^3 x (pi D L) = 2.04 x 10^3 kJ/hr Q = (mass flow rate) cp (Texit – Tinlet) Texit = 16.0713 deg. C Using Colburn analogy at T(average) of approximately 16 deg. C, Average velocity = 3.75 m/s Re = 95242 (Turbulent) fF = 0.0046 Cf/2 = fF/2 = St Pr^2/3 ‐‐> St = (0.0046/2) / (7^(2/3)) = 0.001059 St = h/(rho V Cp) ‐‐> h = 9851 W/m2.K q = h(Ts – Tfluid) ‐‐> Ts = 16.23 deg. C 3. Use the following properties of oil at 20 deg. C (this is the inlet temperature; so, this is an approximation only. The calculations may have to be redone if the exit temperature is << inlet temperature): Density = 888 kg/m3, thermal conductivity = 0.145 W/m. o C, kinematic viscosity = 901 x 10^6 m2/s, heat capacity = 1880 j/kg. o C, Pr = 10400. Check Reynolds number to determine length of entrance region ‐‐> Re = 666, so: D L t Pr Re 0575 . 0 =119,480 m. So, the entrance length region of the pipe is much longer than the pipe itself! This is typical of fluids with very high values of Pr number. Use equation for thermally developing region: 3 2 Pr Re 04 . 0 1 Pr Re 065 . 0 66 . 3 L D L D Nu So, h = 18.0 W/m2. o C. For the case of constant surface temperature,

description

transport phenomena tutorial

Transcript of WK 7 TUTE AnswerSheet

Page 1: WK 7 TUTE AnswerSheet

TransportPhenomenaCHEN3001Week 7 tutorial solutions 

 

1. Calculate average h value based on the rate of heat generated by the microchip,  

TThAVq ss . 

Then, assuming that the flow is laminar, we can use the equation for laminar flow over a flat 

plate, 315.0 PrRe664.0Nu . 

Use the film temperature (Tf = 42.5 deg. C) to evaluate the properties of air: Kinematic 

viscosity = 17x10^‐6 m2/s, Pr = 0.705, thermal conductivity = 0.0273 W/m.K. 

Bulk fluid velocity = 3.95 m/s. 

Check Reynolds number to see if the flow is indeed laminar! 

The solution to the boundary layer equations shows that for maximum heat transfer, we 

want to have the thinnest boundary layer over the surface of the chip. To minimise the 

boundary layer thickness and maximum the heat transfer coefficient, we want to orient the 

short dimension of the chip parallel to the flow.  

  

2. Q = Heat transfer rate = Heat flux x surface area =5.7x10^3 x (pi D L) = 2.04 x 10^3 kJ/hr 

Q = (mass flow rate) cp (Texit – Tinlet)  

Texit = 16.0713 deg. C 

Using Colburn analogy at T(average) of approximately 16 deg. C,  

  Average velocity = 3.75 m/s 

  Re = 95242 (Turbulent) 

  fF = 0.0046 

Cf/2 = fF/2 = St Pr^2/3 ‐‐> St = (0.0046/2) / (7^(2/3)) = 0.001059 

St = h/(rho V Cp) ‐‐> h = 9851 W/m2.K 

q = h(Ts – Tfluid) ‐‐> Ts = 16.23 deg. C 

 

3. Use the following properties of oil at 20 deg. C (this is the inlet temperature; so, this is an 

approximation only. The calculations may have to be re‐done if the exit temperature is << 

inlet temperature): 

Density = 888 kg/m3, thermal conductivity = 0.145 W/m.oC, kinematic viscosity = 

901 x 10^‐6 m2/s, heat capacity = 1880 j/kg.oC, Pr = 10400. 

Check Reynolds number to determine length of entrance region ‐‐> Re = 666, so: 

    DLt PrRe0575.0 =119,480 m. 

So, the entrance length region of the pipe is much longer than the pipe itself! This is typical 

of fluids with very high values of Pr number. 

Use equation for thermally developing region:  32PrRe04.01

PrRe065.066.3

LD

LDNu

 

So, h = 18.0 W/m2.oC. For the case of constant surface temperature, 

Page 2: WK 7 TUTE AnswerSheet

a.

Lp

s

is

es hCm

A

TT

TT

exp  

So, Texit = 19.71 deg. C. As the mean temperature of the oil doesn’t decrease very much 

from 20 deg. C, we don’t need to re‐evaluate the properties of the oil at the average 

temperature. 

b. Determine log mean temperature difference,  ie

ie

TT

TTT

lnln , then calculate heat 

transfer rate,  lnThAQ Ls = ‐67.4 kW 

c. As flow is laminar, f = 64/Re. Then, D

LvfP

2

2 =1.14 x 10^5 Pa 

Pumping power required = P x volume flow rate  

      = 16.1 kW 

 

4. This is a conjugate heat transfer problem, i.e. 

oo

io

ii

oir

hDk

DD

hD

TTQ

1

2

)/ln(1,,

 

Calculate h value inside the pipe: 

  As flow is fully turbulent, we can use Dittus‐Boelter equation. Properties of water at 

the mean temperature: thermal conductivity = 0.67 W/m.K, Pr = 2.2. 

k

DhNu i

D 3154 PrRe023.0  ‐‐> hi = 2765 W/m2.K 

  Calculate h value outside of pipe, using the Zukauskas correlation: 

   k

DhCNu i

s

nmDD

4

1

Pr

PrPrRe  

  where:  

Re  C m

1‐40  0.75  0.4 

40‐1000  0.51  0.5 

1000‐2x105  0.26 0.6

2x105 – 106  0.076 0.7

   If Pr ≤ 10, n = 0.37, otherwise n = 0.36. 

 Note: I realised I haven’t talked about this correlation in class. The benefit of this correlation 

is that the fluid properties are all evaluated at the bulk fluid temperature ( T ), except for 

Prs, which is evaluated at the surface temperature. Now, as we don’t know the surface 

temperature of the pipe at this stage, let’s assume that the change in Prandtl number 

between  sT and  T is negligible, so  sPrPr is approximately 1. 

Properties of air at the bulk fluid temperature (25 deg. C):  

Page 3: WK 7 TUTE AnswerSheet

Kinematic viscosity = 15.89 x 10^‐6 m2/s, thermal conductivity = 0.0263 W/m.K, Pr = 

0.707. 

   Re = 31,466 

    ho = 120 W/m2.K 

  The rate of heat transfer can then be calculated: Q = 489 W/m.