WK 3 TUTE

1
M. Gumulya Transport Phenomena CHEN 3001 Transport Phenomena CHEN 3001 Week 3 tutorial TOPIC: Boundary layer, drag & lift 1. For a thin plate 15.2 cm wide and 0.914 m long, estimate the boundary layer thickness at the end of the plate and friction force in air moving at a velocity of 12.2 m/s, assuming: a. turbulent flow b. laminar flow The flow is parallel to the width of the plate. 2. A hollow sphere of mass 0.05 g with diameter of 5 mm is released in a column of liquid and attains a terminal velocity of 0.5 cm/s. The density of the liquid is 0.9 g/cm 3 and the wall effects on the moving sphere maybe neglected. Compute the drag force, friction factor (drag coefficient) and the viscosity ofthe liquid. 3. A commercial airplane has a total mass of 70,000 kg and a wing platform of 150 m 2 . The plane has a cruising speed of 558 km/h and a cruising altitude of 12,000 m, where the air density of 0.312 kg/m 3 . The plane has doubleslotted flaps for use during takeoff and landing, but it cruises with all flaps retracted. Assuming the list and drag characteristics of the wings can be approximated using the graphs in Figure 2 (National Advisory committee for Aeronautics), determine: a. The minimum safe speed for takeoff and landing with and without extending the flaps b. Power that needs to be supplied to provide enough thrust to overcome wing drag Figure: Lift and drag coefficients of the wing of an airplane

description

transport phenomena tutorial

Transcript of WK 3 TUTE

Page 1: WK 3 TUTE

M. Gumulya  Transport Phenomena  CHEN 3001   

TransportPhenomenaCHEN3001Week 3 tutorial 

 

TOPIC: Boundary layer, drag & lift 

 

1. For a thin plate 15.2 cm wide and 0.914 m long, estimate the boundary layer thickness at the end of the plate and friction force in air moving at a velocity of 12.2 m/s, assuming: a. turbulent flow b. laminar flow 

The flow is parallel to the width of the plate. 

 

2. A hollow sphere of mass 0.05 g with diameter of 5 mm is released in a column of liquid and attains a terminal velocity of 0.5 cm/s. The density of the liquid is 0.9 g/cm3 and the wall effects on the moving sphere maybe neglected. Compute the drag force, friction factor (drag coefficient) and the viscosity ofthe  liquid. 

 3. A commercial airplane has a total mass of 70,000 kg and a wing platform of 150 m2. The 

plane has a cruising speed of 558 km/h and a cruising altitude of 12,000 m, where the air density of 0.312 kg/m3. The plane has double‐slotted flaps for use during take‐off and landing, but it cruises with all flaps retracted. Assuming the list and drag characteristics of the wings can be approximated using the graphs in Figure 2 (National Advisory committee for Aeronautics), determine: 

a. The minimum safe speed for take‐off and landing with and without extending the flaps 

b. Power that needs to be supplied to provide enough thrust to overcome wing drag 

 

Figure: Lift and drag coefficients of the wing of an airplane