WK 10 TUTE(1)

2
M. Gumulya Transport Phenomena CHEN 3001 Transport Phenomena CHEN 3001 Week 10 tutorial TOPIC: Transient diffusion and convective mass transfer 1. The surface of a mild steel component is commonly hardened by packing the component in a carbonaceous material in a furnace at a high temperature for a predetermined time. Consider such a component with a uniform initial carbon concentration of 0.15% by mass. The component is packed in a carbonaceous material and is placed in a hightemperature furnace. The diffusion coefficient of carbon in steel at the furnace temperature is given to be 4.8 x 10 10 m 2 /s, and the equilibrium concentration of carbon in the iron at the interface is determined from equilibrium data to be 1.2% by mass. Determine how long the component should be kept in the furnace for the mass concentration of carbon 0.5 mm below the surface to reach 1%. 2. A large sheet of material 40 mm thick contains dissolved hydrogen at a uniform concentration of 3 kmol/m 3 . The sheet is exposed to a fluid stream, causing the concentration of the dissolved hydrogen to be reduced suddenly to zero at both surfaces. This surface condition is maintained constant thereafter. If the mass diffusivity of hydrogen is 9 x 10 7 m 2 /s, how much time is required to bring the density of dissolved hydrogen to 1.2 kg/m 3 at the centre of the sheet? 3. In a manufacturing process, an organic solvent (methyl ethyl ketone, MEK) is used to dissolve a thin coating of polymer film away from a nonporous flat surface (length 20 cm, width 10 cm, see Figure 1). The thickness of the polymer film is initially uniform at 0.2 mm. In the process, MEK is added at a flow rate of 30 cm 3 /s to an open flat pan of length 30 cm and width 10 cm. The depth of the liquid MEK in the pan is maintained at 2.0 cm. Assuming that the concentration of the dissolved polymer in the bulk solvent is essentially zero (c A= 0), determine the rate of removal of polymer coating. Data: diffusion coefficient of dissolved polymer in MEK = 3 x 10 6 cm 2 /s; kinematic viscosity of MEK = 6 x 10 3 cm 2 /s; density of polymer material (solid) = 1.05 g/cm 3 ; density of MEK = 0.8 g/cm 3 ; maximum solubility of polymer in MEK = 0.04 g/cm 3 .

description

transport phenomena tutorial

Transcript of WK 10 TUTE(1)

Page 1: WK 10 TUTE(1)

M. Gumulya  Transport Phenomena  CHEN 3001  

TransportPhenomenaCHEN3001Week 10 tutorial 

 

TOPIC: Transient diffusion and convective mass transfer 

 

1. The surface of a mild steel component is commonly hardened by packing the component in a 

carbonaceous material in a furnace at a high temperature for a predetermined time. Consider 

such a component with a uniform initial carbon concentration of 0.15% by mass. The 

component is packed in a carbonaceous material and is placed in a high‐temperature furnace. 

The diffusion coefficient of carbon in steel at the furnace temperature is given to be 4.8 x 10‐10 

m2/s, and the equilibrium concentration of carbon in the iron at the interface is determined 

from equilibrium data to be 1.2% by mass. Determine how long the component should be kept 

in the furnace for the mass concentration of carbon 0.5 mm below the surface to reach 1%. 

 

2. A large sheet of material 40 mm thick contains dissolved hydrogen at a uniform concentration 

of 3 kmol/m3. The sheet is exposed to a fluid stream, causing the concentration of the dissolved 

hydrogen to be reduced suddenly to zero at both surfaces. This surface condition is maintained 

constant thereafter. If the mass diffusivity of hydrogen is 9 x 10‐7 m2/s, how much time is 

required to bring the density of dissolved hydrogen to 1.2 kg/m3 at the centre of the sheet? 

 

3. In a manufacturing process, an organic solvent (methyl ethyl ketone, MEK) is used to dissolve a 

thin coating of polymer film away from a nonporous flat surface (length 20 cm, width 10 cm, 

see Figure 1). The thickness of the polymer film is initially uniform at 0.2 mm. In the process, 

MEK is added at a flow rate of 30 cm3/s to an open flat pan of length 30 cm and width 10 cm. 

The depth of the liquid MEK in the pan is maintained at 2.0 cm. Assuming that the 

concentration of the dissolved polymer in the bulk solvent is essentially zero (cA∞ = 0), 

determine the rate of removal of polymer coating. 

 

Data: diffusion coefficient of dissolved polymer in MEK = 3 x 10‐6 cm2/s; kinematic viscosity 

of MEK = 6 x 10‐3 cm2/s; density of polymer material (solid) = 1.05 g/cm3; density of MEK = 

0.8 g/cm3; maximum solubility of polymer in MEK = 0.04 g/cm3. 

  

Page 2: WK 10 TUTE(1)

M. Gumulya  Transport Phenomena  CHEN 3001  

4. Water evaporates from a wetted surface of rectangular shape, with an air stream (1 atm, 35oC) 

blown over the surface at a velocity of 15 m/s. Heat transfer measurements indicate that for air 

at 1 atm and 35oC, the average heat transfer coefficient is given by the following empirical 

relation: 6.021 Vh  

where  h is the average heat transfer coefficient in W/m2.K and  V is the air velocity in m/s. 

Estimate the mass transfer coefficient and the rate of evaporation of water from the surface if 

the area is 1.5 m2. 

 

5. A solid sphere of benzoic acid (density = 1267 kg/m3) with a diameter of 12 mm is dropped into 

a long cylindrical tank filled with pure water at 25oC at a terminal velocity of 0.3 m/s. If the 

height of the tank is 3 m, determine the amount of benzoic acid dissolved from the sphere 

when it reaches the bottom of the tank. The saturation solubility of benzoic acid in water is 

3.412 kg/m3.  

 

Hint: You can assume that the diameter of the sphere does not change considerably, and hence 

the Reynolds number and terminal velocity remain constant.