with high energy density Supporting information arrays as ... · 8 Working electrode Morphology...

10
1 Supporting information Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density Youzhang Huang, a Liang Quan, a Tianqing Liu, a Qidi Chen, a Daoping Cai, a * and Hongbing Zhan a,b * a College of Materials Science and Engineering, Fuzhou University, Fujian 350108, China. b Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fujian 350108, China. *Corresponding author: Daoping Cai and Hongbing Zhan. E–mail address: [email protected]; [email protected]. Tel.: +86-591-22866532; Fax: +86-591-22866539. Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Transcript of with high energy density Supporting information arrays as ... · 8 Working electrode Morphology...

Page 1: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

1

Supporting information

Construction of MOF-derived hollow Ni-Zn-Co-S nanosword

arrays as binder-free electrodes for asymmetric supercapacitors

with high energy density

Youzhang Huang,a Liang Quan,a Tianqing Liu,a Qidi Chen,a Daoping Cai,a* and

Hongbing Zhana,b*

a College of Materials Science and Engineering, Fuzhou University, Fujian 350108,

China.

b Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fujian

350108, China.

*Corresponding author: Daoping Cai and Hongbing Zhan.

E–mail address: [email protected]; [email protected].

Tel.: +86-591-22866532; Fax: +86-591-22866539.

Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2018

Page 2: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

2

Figure S1. Optical image of the pristine NF, Zn-Co-ZIF NSAs and Ni-Zn-Co-S NSAs on NF.

Figure S2. XRD pattern of the Zn-Co-ZIF-0.33 NSAs.

Page 3: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

3

Figure S3. EDS analyses of the Ni-Co-S, Ni-Zn-Co-S-0.25, Ni-Zn-Co-S-0.33 and Ni-Zn-Co-S-

0.50 NSAs.

Page 4: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

4

Figure S4. SEM images of the (a-c) Co-ZIF, Zn-Co-ZIF-0.25 and Zn-Co-ZIF-0.50 NSAs on NF,

(d-f) corresponding hollow Ni-Co-S, Ni-Zn-Co-S-0.25 and Ni-Zn-Co-S-0.50 NSAs on NF at

different magnifications.

Figure S5. The pore size distribution of the hollow Ni-Zn-Co-S-0.33 NSAs scraped down from

NF.

Page 5: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

5

Figure S6. XRD patterns of the Ni-Co-S, Ni-Zn-Co-S-0.25, Ni-Zn-Co-S-0.33 and Ni-Zn-Co-S-

0.50 NSAs scratched down from NF.

Figure S7. CV curves of pristine NF and Ni-Zn-Co-S-0.33 NSA/NF electrode at a scan rate of 10

mV s−1.

Page 6: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

6

Figure S8. CV and GCD curves of the (a, d) Ni-Co-S NSAs/NF, (b, e) Ni-Zn-Co-S-0.25

NSAs/NF and (c, f) Ni-Zn-Co-S-0.50 NSAs/NF electrodes.

Figure S9. SEM images and EDS analyses of the (a, c) Ni-Zn-Co-S-0.33 NSAs/NF and (b, d)

Bi2O3/NF electrodes after cycling.

Page 7: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

7

Figure S10. EDS results of the Ni-Zn-Co-S-0.33 NSAs at the (a) 50th, (b) 100th and (c) 250th

cycles.

Figure S11. XRD pattern of the Ni-Zn-Co-S-0.33 NSAs/NF after cycling.

Page 8: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

8

Working electrode Morphology Electrolyte Stability Reference

Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This work

Bi2O3/T-NT Cluster 1 M NaOH 75% (500 cycles) (1)

ESCNF@Bi2O3 Nanosheets 1 M KOH 87% (2000 cycles) (2)

Bi2O3 Rods 6 M KOH 62% (1000 cycles) (3)

Bi2O3 3D hierarchical 6 M KOH 56% (500 cycles) (4)

Bi2O3/activated

carbon

Floccular 6 M KOH 59%(1000 cycles) (5)

Bi2O3/activated

carbon

Nanoparticles 6 M KOH 80% (750 cycles) (6)

Bi2S3/RGO Uniform flake 2 M KOH 75%(100 cycles) (7)

Bi2O3–NF Flower-type 6 M KOH 85%(2000 cycles) (8)

Table S1. Comparison of the electrochemical performance of other reported Bi2O3-based negative

electrode materials for supercapacitors.

Page 9: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

9

Reported ASC Device ElectrolyteEnergydensity[Wh kg–

1]

PowerDensity[W kg–1]

References

Ni-Zn-Co-S-0.33/NF//Bi2O3/NF 3 M KOH 91.7 458 This work

Co9S8-NSA//AC 1 M KOH 20 828.5 (9)

Zn0.76Co0.24S/NGN/CNTs//NGN/CNTs

6 M KOH 50.2 750 (10)

NiCo2S4/CT//AC 6 M KOH 40.1 451 (11)

Co3O4//carbon 6 M KOH 36 800 (12)

CC/CNF/Ni−Co LDH//CC/CNF/Bi2O3

3 M KOH 88.1 440 (13)

NiCo2O4/MnO2//AC 1 M KOH 37.5 187.5 (14)

Ni3S2//graphene 2 M KOH 19.8 798 (15)

NiCo2O4@MnO2

//AC1 M NaOH 35 163 (16)

NiCo2O4//AC 1 M KOH 15.5 1000 (17)

CoMoO4//AC 2 M KOH 37.25 900 (18)

Table S2. Comparison of the electrochemical performance of other reported ASC devices.

Page 10: with high energy density Supporting information arrays as ... · 8 Working electrode Morphology Electrolyte Stability Reference Bi2O3/NF Nanosheets 3 M KOH 87 % (1000 cycles) This

10

References

1. B. Sarma, A. L. Jurovitzki, Y. R. Smith, S. K. Mohanty and M. Misra, ACS Appl. Mater.

Interfaces, 2013, 5, 1688.

2. L. Li, X. Zhang, Z. Zhang, M. Zhang, L. Cong, Y. Pan and S. Lina, J. Mater. Chem. A, 2016, 4,

16635.

3. X. Huang, W. Zhang, Y. Tan, J. Wu, Y. Gao and B. Tang, Ceram. Int., 2016, 42, 2099.

4. J. Sun, J. Wang, Z. Li, Z. Yang and S. Yang, RSC Adv., 2015, 5, 51773.

5. S. X. Wang, C. C. Jin and W. J. Qian, J. Alloys Compd., 2014, 615, 12.

6. J. F. Li, Q. S. Wu and G. T. Zan, J. Inorg. Chem., 2015, 5751.

7. G. D. Nie, X. F. Lu, J. Y. Lei, L. and Yang, C, Electrochim. Acta, 2015, 154, 24.

8. N. M. Shinde, Q. X. Xia, J. M. Yun, S. Singh, R. S. Mane and K. Ho. Kim, Dalton Trans., 2017,

46, 6601.

9. X. Han, K. Tao, D. Wang and L. Han, Nanoscale, 2018, 10, 2735

10. H. Tong, W. Bai, S. Yue, Z. Gao, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He and X. Zhang,

J. Mater. Chem. A, 2016, 4, 11256.

11. L. Hao, L. F. Shen, J. Wang, Y. L. Xu and X. G. Zhang, RSC Adv., 2016, 6, 9950.

12. R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim and Y. Yamauchi, ACS Nano,

2015, 9, 6288.

13. X. Li, C. Guan, Y. Hu and J. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 26008.

14. Y. Zhang, B. Wang, F. Liu, J. Cheng, X. Zhang and L. Zhang, Nano Energy, 2016, 27, 6277.

15. C. S. Dai, P. Y. Chien, J. Y. Lin, S. W. Chou, W. K. Wu, P. H. Li, K. Y. Wu and T. W. Lin,

ACS Appl. Mater. Interfaces, 2013, 5, 12168.

16. K. Xu, W. Li, Q. Liu, B. Li, X. Liu, L. An, Z. Chen, R. Zou and J. Hu, J. Mater. Chem. A,

2014, 2, 4795.

17. X. F. Lu, D. J. Wu, R. Z. Li, Q. Li, S. H. Ye, Y. X. Tong and G. R. Li, J. Mater. Chem. A,

2014, 2, 4706.

18. X. Yu, B. Lu and Z. Xu, Adv. Mater., 2014, 26, 1044.