with anisotropic Gibbs{Thomson law The Stefan problem

48
Introduction Anisotropic energies and weak formulation Main existence result Computational results The Stefan problem with anisotropic Gibbs–Thomson law Harald Garcke University of Regensburg joint with Stefan Schaubeck (Regensburg) August 2010 Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Transcript of with anisotropic Gibbs{Thomson law The Stefan problem

Introduction Anisotropic energies and weak formulation Main existence result Computational results

The Stefan problemwith anisotropic Gibbs–Thomson law

Harald Garcke

University of Regensburg

joint with Stefan Schaubeck (Regensburg)

August 2010

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Outline

1 Introduction

2 Anisotropic energies and weak formulation

3 Main existence result

4 Computational results

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Stefan problem modelsmelting and solidification

Gibbs Thomson lawaccounts for surface energy

Geometry:

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Stefan problem modelsmelting and solidification

Gibbs Thomson lawaccounts for surface energy

Geometry:

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Mathematical description

Energy balance

∂t(u + χ)−∆u = f weakly !

u : temperatureχ : characteristic function of liquidf : heat sources

Strong formulation:in bulk ∂tu −∆u = f heat equation

on interface Γ V = −[∂u∂ν ] Stefan condition

V : normal velocity[.] : jump across interface

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Mathematical description

Energy balance

∂t(u + χ)−∆u = f weakly !

u : temperatureχ : characteristic function of liquidf : heat sources

Strong formulation:in bulk ∂tu −∆u = f heat equation

on interface Γ V = −[∂u∂ν ] Stefan condition

V : normal velocity[.] : jump across interface

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Further condition on interface

Classical condition

u = 0 (= melting temperature)

Physically observed : undercooling (u < 0) in liquid andsuperheating (u > 0) for solid is possible

Reason: Surface energy effects are neglected in classical model

Modified condition

u = H (Gibbs–Thomson law)

H : mean curvature

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Further condition on interface

Classical condition

u = 0 (= melting temperature)

Physically observed : undercooling (u < 0) in liquid andsuperheating (u > 0) for solid is possible

Reason: Surface energy effects are neglected in classical model

Modified condition

u = H (Gibbs–Thomson law)

H : mean curvature

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Issues:

Interfaces do not stay smooth (e.g. topological changes)We need a weak formulation of u = H

u = H describes isotropic surface energyIn nature: surface energies are anisotropic (leads to crystals)

Weak formulation of u = H:

∫ΩT

(∇ · ξ − ∇χ

|∇χ|· Dξ ∇χ|∇χ|

)d |∇χ(t)|dt =

∫ΩT

∇ · (uξ)χdxdt

for all ξ ∈ C∞(ΩT ,Rn) with ξ · n = 0

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Issues:

Interfaces do not stay smooth (e.g. topological changes)We need a weak formulation of u = H

u = H describes isotropic surface energyIn nature: surface energies are anisotropic (leads to crystals)

Weak formulation of u = H:

∫ΩT

(∇ · ξ − ∇χ

|∇χ|· Dξ ∇χ|∇χ|

)d |∇χ(t)|dt =

∫ΩT

∇ · (uξ)χdxdt

for all ξ ∈ C∞(ΩT ,Rn) with ξ · n = 0

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Important analytical results:

Classical solutions : Chen, Reitich (1992)Radkevich (1992)Escher, Pruss, Simonett (2003)Mucha (2005)

Weak solutions : Luckhaus (1990)Roger (2004)

Idea for the construction of weak solutions (Luckhaus)Use implicit time discretization

All results are for the isotropic case

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Important analytical results:

Classical solutions : Chen, Reitich (1992)Radkevich (1992)Escher, Pruss, Simonett (2003)Mucha (2005)

Weak solutions : Luckhaus (1990)Roger (2004)

Idea for the construction of weak solutions (Luckhaus)Use implicit time discretization

All results are for the isotropic case

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Anisotropic energy

Interfacial energy:

F(Γ) :=

∫Γγ(ν)dHn−1 for a hypersurface γ

γ : Rd \ 0 → R+, one-homogeneous, strictly convex, smooth

First variation

δFδΓ

(Γ)(ξ) =

∫ΓHγ(ξ · ν)dHn−1

with Hγ := ∇Γ · (Dγ(ν))where Dγ is the gradient of γ

Anisotropic Gibbs–Thomson law

u = Hγ , (Gurtin, 1988)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Anisotropic energy

Interfacial energy:

F(Γ) :=

∫Γγ(ν)dHn−1 for a hypersurface γ

γ : Rd \ 0 → R+, one-homogeneous, strictly convex, smooth

First variation

δFδΓ

(Γ)(ξ) =

∫ΓHγ(ξ · ν)dHn−1

with Hγ := ∇Γ · (Dγ(ν))where Dγ is the gradient of γ

Anisotropic Gibbs–Thomson law

u = Hγ , (Gurtin, 1988)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Anisotropic energy

Interfacial energy:

F(Γ) :=

∫Γγ(ν)dHn−1 for a hypersurface γ

γ : Rd \ 0 → R+, one-homogeneous, strictly convex, smooth

First variation

δFδΓ

(Γ)(ξ) =

∫ΓHγ(ξ · ν)dHn−1

with Hγ := ∇Γ · (Dγ(ν))where Dγ is the gradient of γ

Anisotropic Gibbs–Thomson law

u = Hγ , (Gurtin, 1988)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Weak formulation of anisotropic Gibbs–Thomson law∫Ω

(div ξγ(ν)− ν · DξDγ(ν))d |∇χ| =

∫Ω

div (uξ)χdx

Question:How can we define the energy in the BV–context?

Introduce dual function !

γ0(q) = supp∈Rd\0

p · qγ(p)

q ∈ Rd \ 0

γ0 one-homogeneous, strictly convex, smooth

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Weak formulation of anisotropic Gibbs–Thomson law∫Ω

(div ξγ(ν)− ν · DξDγ(ν))d |∇χ| =

∫Ω

div (uξ)χdx

Question:How can we define the energy in the BV–context?

Introduce dual function !

γ0(q) = supp∈Rd\0

p · qγ(p)

q ∈ Rd \ 0

γ0 one-homogeneous, strictly convex, smooth

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Weak formulation of anisotropic Gibbs–Thomson law∫Ω

(div ξγ(ν)− ν · DξDγ(ν))d |∇χ| =

∫Ω

div (uξ)χdx

Question:How can we define the energy in the BV–context?

Introduce dual function !

γ0(q) = supp∈Rd\0

p · qγ(p)

q ∈ Rd \ 0

γ0 one-homogeneous, strictly convex, smooth

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Important identity

F(Γ) =

∫Γγ(ν)dHn−1 = sup

∫Ωχ divϕdx | γ0(ϕ) ≤ 1

see Amar and Bellettini

Remarks

Above identity implies lower semi-continuity of F w.r.t. L1

We can show: first variation of F is given as:∫Ωdivξγ(ν)− ν · DξDγ(ν)d |∇χ|

Idea: Use sup-definition above and approximation arguments.

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Important identity

F(Γ) =

∫Γγ(ν)dHn−1 = sup

∫Ωχ divϕdx | γ0(ϕ) ≤ 1

see Amar and Bellettini

Remarks

Above identity implies lower semi-continuity of F w.r.t. L1

We can show: first variation of F is given as:∫Ωdivξγ(ν)− ν · DξDγ(ν)d |∇χ|

Idea: Use sup-definition above and approximation arguments.

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Visualize surface energy with the help ofFrank diagram: 1-ball of γ

F = p ∈ Rd | γ(p) ≤ 1Wulff shape: 1-ball of γ0

W = q ∈ Rd | γ0(q) ≤ 1

Isoperimetric characterization

Wulff shape W minimizes surface energy among all surfaces thatenclose the same volume

Frank diagrams and Wulff shapes for different surface energies.

Cubic anisotropy (left) and hexagonal anisotropy (right).

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Visualize surface energy with the help ofFrank diagram: 1-ball of γ

F = p ∈ Rd | γ(p) ≤ 1Wulff shape: 1-ball of γ0

W = q ∈ Rd | γ0(q) ≤ 1

Isoperimetric characterization

Wulff shape W minimizes surface energy among all surfaces thatenclose the same volume

Frank diagrams and Wulff shapes for different surface energies.

Cubic anisotropy (left) and hexagonal anisotropy (right).

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Main existence result

Theorem: Assumptions:

i) Ω is a bounded C 1–domain

ii) initial data u0 ∈ L∞ ∩ H1,2, χ0 ∈ BV (Ω, 0, 1),

iii) Dirichlet data uD ∈ H1,2(Ω),

iv) r.h.s f ∈ L∞(ΩT ).

Then there exists

χ ∈ L∞(ΩT , 0, 1), |∇χ(t)| ≤ C

u ∈ [uD + L2(0,T ; H1,20 (Ω))] ∩ L∞(0,T ; L2(Ω))

such that

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Main existence result (continued)

∫ T0

∫Ω(u + χ)∂tϕ+

∫Ω(u0 + χ0)ϕ(0) =∫ T

0

∫Ω∇u · ∇ϕ−

∫ T0

∫Ω f ϕ

for all ϕ ∈ C∞0 ([0,T )× Ω), and∫ T

0

∫Ω

(div ξDγ(ν) · ν − ν · DξDγ(ν)) d |∇χ(t)|dt =

∫ΩT

div (uξ)

for all ξ ∈ C 1(ΩT ,Rd) with ξ · n = 0 on ∂Ω.

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Proof

As Luckhaus use an implicite time discretization:

h > 0 time step .

Assume uh(t − h), χh(t − h) is given.Define functional

Fh,t(χ) :=∫

Ω γ(ν)d |∇χ| − 12 (u(χ))2 − u(χ)χ+

u(χ)(uh(t − h) + χh(t − h))

such that

(u + χ)− (uh(t − h) + χh(t − h))− h∆u = hf h(t)

+ b.c.Fh,t can be interpreted as negative entropy !

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Fh,t has minimizer χh(t) (use direct method)Note: γ is convexDefine uh(t) as a solution of time discrete diffusion equation

Lemma (energy estimate)

ess sup0≤t≤T

(‖uh(t)‖2

L2 +

∫Ωγ(νh)

)+

∫ T

0

∫Ω|∇uh|2 ≤ C

∫ T

0‖∂−h

t (uh + χh)(t)‖2H−1,2(Ω) ≤ C

Proof: Test diffusion equation by uh − uD and use

Fh,t(χhi ) ≤ Fh,t(χh

i−1)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Fh,t has minimizer χh(t) (use direct method)Note: γ is convexDefine uh(t) as a solution of time discrete diffusion equation

Lemma (energy estimate)

ess sup0≤t≤T

(‖uh(t)‖2

L2 +

∫Ωγ(νh)

)+

∫ T

0

∫Ω|∇uh|2 ≤ C

∫ T

0‖∂−h

t (uh + χh)(t)‖2H−1,2(Ω) ≤ C

Proof: Test diffusion equation by uh − uD and use

Fh,t(χhi ) ≤ Fh,t(χh

i−1)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Fh,t has minimizer χh(t) (use direct method)Note: γ is convexDefine uh(t) as a solution of time discrete diffusion equation

Lemma (energy estimate)

ess sup0≤t≤T

(‖uh(t)‖2

L2 +

∫Ωγ(νh)

)+

∫ T

0

∫Ω|∇uh|2 ≤ C

∫ T

0‖∂−h

t (uh + χh)(t)‖2H−1,2(Ω) ≤ C

Proof: Test diffusion equation by uh − uD and use

Fh,t(χhi ) ≤ Fh,t(χh

i−1)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Use standard compactness results and compactness results of Altand Luckhaus to obtain convergent subsequence of (uh, χh)Passing to the limit in diffusion equation is standard

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Minima of (χh, uh) of Fh,t fulfills

0 =∫

Ω(div ξDγ(νh(t)) · νh(t)−νh(t) · DξDγ(νh(t)))d |∇χh(t)| −

∫Ω div (uh(t)ξ)χh(t)+ (1)∫

Ω div (L0h(uh(t)− uh(t − h) + χh(t)− χh(t − h))ξ)χh(t)

for all ξ ∈ C∞(Ω,Rd), with ξ · n = 0, where νh(t) = − ∇χh(t)

|∇χh(t)|where v = L0

h(g) is the solutionof v − h∆v = −g in Ω v = 0 on ∂Ω

Goal: Pass to the limit in the discrete Gibbs–Thomson equation (1)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Minima of (χh, uh) of Fh,t fulfills

0 =∫

Ω(div ξDγ(νh(t)) · νh(t)−νh(t) · DξDγ(νh(t)))d |∇χh(t)| −

∫Ω div (uh(t)ξ)χh(t)+ (1)∫

Ω div (L0h(uh(t)− uh(t − h) + χh(t)− χh(t − h))ξ)χh(t)

for all ξ ∈ C∞(Ω,Rd), with ξ · n = 0, where νh(t) = − ∇χh(t)

|∇χh(t)|where v = L0

h(g) is the solutionof v − h∆v = −g in Ω v = 0 on ∂Ω

Goal: Pass to the limit in the discrete Gibbs–Thomson equation (1)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

We observe∫Ωγ(νh)d |∇χh| →

∫Ωγ(ν)d |∇χ| as h→ 0

Uselower semicontinuity of

∫Ω γ(ν)d |∇χ|

and

strong convergence of uh in L2,

the fact that χh solve a minimization problem involving∫Ω γ(ν)d |∇χ|

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Main difficulty: Show Dγ(νh)→ Dγ(ν)[Convergence in the Cahn–Hoffmann ξ–vector]

Since∫Ωγ(ν)|∇χ| = sup

∫Ωχ divϕdx | ϕ ∈ C 1(Ω,Rd), γ0(ϕ(x)) ≤ 1

we obtain a gε ∈ C 1

0 (Ω,Rd) with γ0(g ε) ≤ 1 such that∫Ω

(γ(ν)− gε · ν)d |∇χ| ≤ 13ε

Claim:

gε is a good approximation of the Cahn–Hoffmann vectorξ = Dγ(ν)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Technical observation

If γ is strictly convex in the sense thatthere exists a d0 > 0 such that

(D2γ0)(p)q · q ≥ d0|q|2 for all p, q ∈ Rn, |p| = 1, p · q = 0

Then we obtain (using a Lemma of Dziuk)∃C > 0 ∀ ν ∈ Sd−1, p ∈ Rd with γ0(p) ≤ 1

C |Dγ(ν)− p| ≤ γ(ν)− p · ν

Henceγ(ν)− p · ν small implies

p is a good approximation of the ξ–vector Dγ(ν)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Technical observation

If γ is strictly convex in the sense thatthere exists a d0 > 0 such that

(D2γ0)(p)q · q ≥ d0|q|2 for all p, q ∈ Rn, |p| = 1, p · q = 0

Then we obtain (using a Lemma of Dziuk)∃C > 0 ∀ ν ∈ Sd−1, p ∈ Rd with γ0(p) ≤ 1

C |Dγ(ν)− p| ≤ γ(ν)− p · ν

Henceγ(ν)− p · ν small implies

p is a good approximation of the ξ–vector Dγ(ν)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Steps: ∫Ω

(γ(ν)− gε · ν))d |∇χ| ≤ 13ε∫

Ωγ(νh)d |∇χh| →

∫Ωγ(ν)d |∇χ|

implies

gε is a good approximation of Dγ(ν) and Dγ(νh)

This can be used to show∫Ωνh · DξDγ(νh)d |∇χh| →

∫Ων · DξDγ(ν)d |∇χ|

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Convergence in the other terms of the weak formulation is easier(and omitted here)We finally obtain the weak formulation∫ T

0

∫Ω

(div ξDγ(ν) · ν − ν · Dξ(ν)Dγ(ν))d |∇χ| =

∫ΩT

div (uξ)χ

Related result by Rybka (1999):

space dimension 2,

crystalline curvature,

no facet braking allowed.

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Convergence in the other terms of the weak formulation is easier(and omitted here)We finally obtain the weak formulation∫ T

0

∫Ω

(div ξDγ(ν) · ν − ν · Dξ(ν)Dγ(ν))d |∇χ| =

∫ΩT

div (uξ)χ

Related result by Rybka (1999):

space dimension 2,

crystalline curvature,

no facet braking allowed.

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Numerical solutions

Stefan problem with kinetic undercooling

∂tu −∆u = f in liquid and solid

[∂u∂ν ] = − 1

SV Stefan condition on interface Γ1

β(ν)V = Hγ − Su generalized Gibbs–Thomson relation

[.] jump across interface

S undercoolingβ kinetic coefficient

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

We can handle e.g. the following anisotropies

Frank diagrams (left) and Wulff shapes (right)

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Stability

Continuous Lyapunov structure (uD constant)

d

dt

(∫Ω

(u − uD)2 + F(Γ) + uDvol(Ωs(t))

)+∫

Ω|∇u|2 +

∫Ω

V2

β(~ν)ds ≤ (f , u − uD)

We obtain a discrete analogue of the above inequality even in theanisotropic case

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Mullins Sekerka instability in 2D

undercooling S = 1, isotropic surface energy 5× 10−3, 2× 10−3, 10−3

undercooling S = 1, cubic anisotropy with prefactor 5× 10−3, 2× 10−3, 10−3

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Solidification with cubic anisotropy

Small sphere as initial data

Computation for different refinements. Oscillations disappearfor fine grids

Details of the evolution on finest gridHarald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Hexagonal symmetry (snow crystal symmetry)

Morphology

diagram of

Nakaya

2D-computationHarald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Classical snow crystals

formation of plates

real snowflake

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Many forms need 3D computations

Formation of hollow columns (facet braking)

Compare analytical results by Giga and Rybka (2008)

real snowflakeHarald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Another 3D effect

A more pronounced real snowflake

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law

Introduction Anisotropic energies and weak formulation Main existence result Computational results

Remarks and Conclusions

We showed global existence of weak solutions for the Stefanproblem with anisotropic Gibbs-Thomson law

The general crystalline case is still open

We introduced stable finite element discretization with goodmesh properties (No redistancing of mesh points necessary)

Hence: crystalline anisotropies can be approximated in astable and efficient way

The Stefan problem with anisotropic Gibbs-Thomson lawmodels realistic crystal growth phenomena

Harald Garcke The Stefan problem with anisotropic Gibbs–Thomson law