Wireless Communications - Lecture slides · Wireless Communications Contents 1 Motivation 2 Linear...

236
RUHR-UNIVERSITY BOCHUM Wireless Communications Lecture slides Karlheinz Ochs Chair of Digital Communication Systems Communications Systems Chair of Digital Faculty of Electrical Engineering and Information Technology www.dks.rub.de WS 2016/17

Transcript of Wireless Communications - Lecture slides · Wireless Communications Contents 1 Motivation 2 Linear...

RUHR-UNIVERSITY BOCHUM

Wireless CommunicationsLecture slides

Karlheinz Ochs

Chair of Digital Communication Systems

Communications Systems

Chair ofDigital

Faculty of

Electrical Engineering and

Information Technology

www.dks.rub.de WS 2016/17

Wireless Communications

Contents

1 Motivation

2 Linear Systems

3 Wireless Communication Channel

4 Single Input Single Output Systems

5 Multiple Input Multiple Output Systems

6 Optimal Transmission Strategies

7 Multiple Access Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Motivation

Wireless CommunicationsMotivation

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Motivation

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Motivation Preliminaries

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Preliminaries 1 / 140

Preliminaries

Trends in Communication Systems

mobile communication

high data rates

low latency

Constraints on Mobile Communication Systems

expensive and limited bandwidth

limited transmitter signal power

time-variant transfer behavior

Problem-solving approaches

orthogonal frequency-division multiplexing (OFDM)

multiple input multiple output systems

multiple antenna systems

cooperative communication

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Motivation Transmission Scenario

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 2 / 140

Transmission scenario

Multipath Propagation Channel

cellular phone

echos

noise

base station

Time-variance

multipath propagation due to mobile objectssample and hold devices, modulators, HF amplifiers, . . .

Transmission conditions are changing with time!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Motivation Challenges

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Challenges 3 / 140

Challenges

Communication theorie

How to design and synthesize digital communication systems?

Information theorie

What is the maximum data rate of a reliable transmission?

Digital signal processing

What is the optimal processing strategy?

Programable hardware

How can a digital communication system be verified?

Determine and reach the limits of communications!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Linear Systems

Wireless CommunicationsLinear Systems

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems

Contents

1 Signals

2 Fourier Series and Transformation

3 Linear Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Signals

Contents

1 Signals

2 Fourier Series and Transformation

3 Linear Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signals 4 / 140

Unit Step Function

Definition

u(ξ) =

1 for ξ > 00 for ξ < 0

Graph

u(ξ)

1

ξ

Remarks

argument can have a physical unit

at discontinuity we may define u(0) = 1/2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signals 5 / 140

Sign Function

Definition

sgn(ξ) =

1 for ξ > 0−1 for ξ < 0

Graph

sgn(ξ)

1

−1

ξ

Remarks

is a superposition of two unit step functions

argument can have a physical unit

at discontinuity we may define sign(0) = 0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signals 6 / 140

Rectangular Function

Definition

rect(ξ) =

1 for |ξ| < 10 for |ξ| > 1

Graph

rect(ξ)

−1 1

1

ξ

Remarks

is a superposition of two unit step functions

argument has no physical unit

at discontinuities we may define rect(±1) = 1/2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signals 7 / 140

Triangular Function

Definition

4(ξ) =

1− |ξ| for |ξ| ≤ 1

0 for |ξ| > 1

Graph

−1 1

1

(ξ)

ξ

Remarks

is the convolution of two rectangular functions

argument has no physical unit

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signals 8 / 140

si-Function

Definition

si(ξ) =

1 for ξ = 0sin(ξ)/ξ for ξ 6= 0

Graph

−4π −3π −2π −π π 2π 3π 4π

1

si(ξ)

ξ

Remarks

argument has no physical unit

decays reciprocal to its argument

zeros si(νπ) = 0 for ν ∈ Z\0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signals 9 / 140

Dirac Delta Function

Definition

∫ t

−∞δ(ξ)dξ = u(t)

Especially ∫ ∞−∞

δ(ξ)dξ = 1

Properties

even

δ(t) = δ(−t)

scaling

δ(αt) =1|α|δ(−t) for α ∈ R \ 0

sifting property

f (t)δ(t − t0) = f (t0)δ(t − t0)

Remarks

argument can have physical unit

function has reciprocal physical unit of its argument

briefly called δ-function

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Fourier Series and Transformation

Contents

1 Signals

2 Fourier Series and TransformationFourier SeriesFourier Transformation

3 Linear Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Series 10 / 140

Fourier Series

Periodic signal

s(t) = s(t − T)

fundamental periodsmallest possible positive T

Examples

sine

s(t) = sin(Ωt) , with ΩT = 2π

cosine

s(t) = cos(Ωt) , with ΩT = 2π

periodically repeated function

s(t) =∞∑

n=−∞

f (t − nT)

Fourier series

s(t) =∞∑

n=−∞

Sn e jnΩt , with Sn =1T

∫ T

0s(t)e−jnΩtdt and ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Series 11 / 140

Often Used Fourier Series

Cosine

s(t) = cos(Ωt) =12

[e jΩt + e−jΩt

]corresponds to real part

Sine

s(t) = sin(Ωt) =12j

[e jΩt − e−jΩt

]corresponds to imaginary part

Periodically repeated function

s(t) =∞∑

n=−∞

f (t − nT) =1T

∞∑n=−∞

F(jnΩ)e jnΩt ,

where f (t) −−•F(jω) and ΩT = 2πLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Series 12 / 140

Fourier Series of the Sampling Function

Definition

δT(t) =∞∑

k=−∞

δ(t − kT)

Graph

δT (t)

−3 −2 −1 0 1 2 3 t/T

Remarks

also called Dirac comb or impulse trainT-periodic functionδ(t) −−• 1

Fourier series

δT(t) =1T

∞∑n=−∞

e jnΩt ,

where ΩT = 2π.Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 13 / 140

Fourier Transformation

Correspondence

x(t) −−•X(jω)

Time domain

x(t) = F−1X(jω) = 12π

∫ ∞−∞

X(jω)e jωtdω

Frequency domain

X(jω) = Fx(t) =∫ ∞−∞

x(t)e−jωtdt

Remark

X(jω) is called Fourier transform or spectrum of x(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 14 / 140

Properties of the Fourier Transformation

Complex conjugation

x∗(t) −−•X∗(−jω)

Time shift

x(t − t0) −−• e−jωt0 X(jω) , with t0 ∈ R

Modulation

x(t)e jω0t −−•X(jω − jω0) , with ω0 ∈ R

Time scaling

x(αt) −−• 1|α|X

(jωα

), with α ∈ R\0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 15 / 140

Properties of the Fourier Transformation

Differentiation

time domain

dx(t)dt−−• jωX(jω)

frequency domain

tx(t) −−• jdX(jω)

Integration

time domain∫ t

−∞x(τ)dτ −−• X(jω)

jω+ πX(0)δ(ω) for X(0) <∞

frequency domain

jx(t)

t+ πx(0)δ(t) −−•

∫ ω

−∞X(jv)dv for x(0) <∞

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 16 / 140

Properties of the Fourier Transformation

Convolution

time domain

x(t) ∗ y(t) =∫ ∞−∞

x(τ)y(t − τ)dτ −−•X(jω)Y(jω)

frequency domain

x(t)y(t) −−• 12π

X(jω) ∗ Y(jω) =1

∫ ∞−∞

X(jv)X(jω − jv)dv

Parseval’s theorem

∫ ∞−∞

x(t)y∗(t)dt =1

∫ ∞−∞

X(jω)Y∗(jω)dω

energy of x(t) if y(t) = x(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 17 / 140

Often Used Correspondences

Rectangular function

rect( t

T

)−−• 2T si(ωT) ,

Ω

πsi(Ωt) −−• rect

( ωΩ

),

with T, Ω > 0

Triangular function

4( t

T

)−−• T si2

(ωT2

),

Ω

πsi2(Ωt) −−•4

( ω

),

with T, Ω > 0

Gaussian function

e−αt2/2 −−•√

2πα

e−ω2/[2α] , with Reα > 0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 18 / 140

Often Used Correspondences

Unit step function

u(t) −−•πδ(ω) +[

1jω

], δ(t) +

[jπt

]−−• 2u(ω)

Signum function

sgn(t) −−•[

2jω

],

[jπt

]−−• sgn(ω)

Delta function

δ(t) −−• 1 , 1 −−• 2πδ(ω)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Fourier Series and Transformation Fourier Transformation 19 / 140

Correspondence of the Sampling Function

Correspondence

δT(t) −−•∆T(jω)

Fourier transform

∆T(jω) =∞∑

k=−∞

e−jωkT = Ω

∞∑n=−∞

δ(ω − nΩ)

Time shift∞∑

k=−∞

δ(t − tk) =1T

∞∑n=−∞

e jnΩ[t−t0]

−−•

∞∑k=−∞

e−jωtk = Ω∞∑

n=−∞

δ(ω − nΩ)e−jnΩt0 ,

with tk = t0 + kT.Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Linear Systems

Contents

1 Signals

2 Fourier Series and Transformation

3 Linear SystemsTime-Invariant SystemsTime-Variant SystemsExamples

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Invariant Systems 20 / 140

Linear Time-Invariant System

System

x(t) S y(t)

Reaction

x(t)→ y(t) = h(t) ∗ x(t) =∫ ∞−∞

h(t − t′)x(t′)dt′

Impulse response

δ(t) S h(t)

Reaction

δ(t)→ y(t) = h(t) ∗ δ(t) = h(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Invariant Systems 21 / 140

Linear Time-Invariant System

Transfer function

ejΩxt S H(jΩx)ejΩxt

Reaction

e jΩx t → y(t) = H(jΩx)e jΩx t

Proof

1 y(t) = e jΩx t ∗ h(t)

2 y(t) =∫∞−∞ e jΩx[t−t′]h(t′)dt′

3 y(t) =∫∞−∞ h(t′)e−jΩx t′dt′ e jΩx t

4 y(t) = H(jΩx)e jΩx t

with

h(t) −−•H(jω)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Invariant Systems 22 / 140

Linear Time-Invariant System

Periodic excitation

∞∑n=−∞

XnejnΩxt S∞∑

n=−∞H(jnΩx)Xne

jnΩxt

Reaction

∞∑n=−∞

Xn e jnΩx t → y(t) =∞∑

n=−∞

H(jnΩx)Xn e jnΩx t

Proof

1 e jnΩx t → H(jnΩx)e jnΩx t

2 Xn e jnΩx t → H(jnΩx)Xn e jnΩx t

3∞∑

n=−∞Xn e jnΩx t → y(t) =

∞∑n=−∞

H(jnΩx)Xn e jnΩx t

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Invariant Systems 23 / 140

Linear Time-Invariant System

Aperiodic excitation

X(jω) S Y (jω)

Reaction

X(jω)→ Y(jω) = H(jω)X(jω)

Proof

1 x(t) =1

2π∫∞−∞ X(jω)e jωtdt = lim

Ω→0xΩ(t)

2 xΩ(t) =∞∑

n=−∞

Ω

2πX(jnΩ)e jnΩt → yΩ(t) =

∞∑n=−∞

Ω

2πH(jnΩ)X(jnΩ)e jnΩt

3 limΩ→0

xΩ(t)→ limΩ→0

yΩ(t)

4 x(t)→ y(t) = F−1H(jω)X(jω)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Variant Systems 24 / 140

Linear Time-Variant System

Transfer function

ejΩxt St H(t, jΩx)ejΩxt

Reaction

e jΩx t → y(t) = H(t, jΩx)e jΩx t

Definition

H(t, jΩx) = y(t)e−jΩx t for all Ωx ∈ R

Time-variant transfer function

H(t, jω′)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Variant Systems 25 / 140

Linear Time-Variant System

Periodic excitation

∞∑n=−∞

XnejnΩxt St

∞∑n=−∞

H(t, jnΩx)XnejnΩxt

Reaction

∞∑n=−∞

Xn e jnΩx t → y(t) =∞∑

n=−∞

H(t, jnΩx)Xn e jnΩx t

Proof

1 e jnΩx t → H(t, jnΩx)e jnΩx t

2 Xn e jnΩx t → H(t, jnΩx)Xn e jnΩx t

3∞∑

n=−∞Xn e jnΩx t → y(t) =

∞∑n=−∞

H(t, jnΩx)Xn e jnΩx t

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Variant Systems 26 / 140

Linear Time-Variant System

Aperiodic excitation

X(jω) St y(t)

Reaction

X(jω)→ y(t) =1

∫ ∞

−∞H(t, jω′)X(jω′)e jω′tdω′

Proof

1 x(t) =1

2π∫∞−∞ X(jω)e jωtdt = lim

Ω→0xΩ(t)

2 xΩ(t) =∞∑

n=−∞

Ω

2πX(jnΩ)e jnΩt → yΩ(t) =

∞∑n=−∞

Ω

2πH(t, jnΩ)X(jnΩ)e jnΩt

3 limΩ→0

xΩ(t)→ limΩ→0

yΩ(t)

4 x(t)→ y(t) = F−1H(t, jω)X(jω)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Variant Systems 27 / 140

Linear Time-Variant System

Impulse response

δ(t− Tx) St h(t, Tx)

Reaction

δ(t − Tx)→ h(t, Tx) with h(t, t′) =1

∫ ∞

−∞H(t, jω′)e jω′[t−t′]dt

Proof

1 x(t) = δ(t − Tx) −−•X(jω) = e−jωTx

2 y(t) =1

2π∫ ∞−∞ H(t, jω′)e−jω′Tx e jω′tdt

3 h(t, Tx) =1

2π∫ ∞−∞ H(t, jω′)e jω′[t−Tx]dt

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Time-Variant Systems 28 / 140

Linear Time-Variant System

System

x(t) St y(t)

Reactions

x(t)→ y(t) =∫ ∞

−∞h(t, t′)x(t′)dt′

X(jω)→ y(t) =1

∫ ∞

−∞H(t, jω′)X(jω′)e jω′tdt

Important

Y(jω) 6= H(t, jω)X(jω)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Examples 29 / 140

Examples of Linear Time-Variant Systems

Linear time-invariant system

x(t) S y(t)

Special excitation

δ(t − Tx)→ h(t − Tx)

e jΩx t → H(jΩx)e jΩx t

System functions

pulse response h(t, t′)= h

(t − t′

)transfer function H

(t, jω′

)= H

(jω′)

Transfer function is constant with respect to time!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Linear Systems Examples 30 / 140

Examples of Linear Time-Variant Systems

Linear frequency-invariant system

x(t)

c(t)

y(t)

Special excitation

δ(t − Tx)→ c(Tx)δ(t − Tx)

e jΩx t → c(t)e jΩx t

System functions

pulse response h(t, t′) = c(t′)δ(t − t′)

transfer function H(t, jω′) = c(t)

Transfer function is constant with respect to frequency!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Wireless Communication Channel

Wireless CommunicationsWireless Communication Channel

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communication Channel

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communication Channel Transmission Scenario

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 31 / 140

Wireless Communications

Transmission scenario

cellular phone

echos

noise

base station

Time-variance

multipath propagation due to mobile objectssample and hold devices, modulators, HF amplifiers, . . .

Transmission conditions are changing with time!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 32 / 140

Time-Invariant Multipath Propagation

Input output relation

y(t) =n∑ν=0

cνxν(t)

transmitted signal arrives at the receiver on different pathsxν(t) = x(t − Tν)

different durationsTν = T0 + νT

attenuation and change of phase

cν = |cν | e j arccν

x(t) T0 T T

c0 c1 cn−1 cn

y(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 33 / 140

Time-Invariant Multipath Propagation

Impulse response

definition

x(t) = δ(t − Tx) → y(t) = h(t − Tx)

impulse response of the multipath channel

h(t) =n∑ν=0

cνδ(t − Tν)

input output relation

y(t) =∫ ∞−∞

h(t − t′)x(t′)dt′

x(t) T0 T T

c0 c1 cn−1 cn

y(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 34 / 140

Time-Invariant Multipath Propagation

Transfer function

definition

x(t) = e jΩx t → y(t) = H(jΩx)e jΩx t

transfer function of the multipath channel

H(jω) =n∑ν=0

cν e−jωTν

input output relation

Y(jω) = H(jω)X(jω)

x(t) T0 T T

c0 c1 cn−1 cn

y(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 35 / 140

Time-Variant Multipath Propagation

Input output relation

y(t) =n∑ν=0

cν(t)x(t − Tν) , with cν(t) ∈ C

Transfer behavior

x(t) = e jΩx t → y(t) =

[n∑ν=0

cν(t)e−jΩxTν

]e jΩx t

x(t) T0 T T

c0(t) c1(t) cn−1(t) cn(t)

y(t)

Time-variant transfer behavior!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 36 / 140

Time-Variant Multipath Propagation

Stochastic Modeling

y(t) = c(t)x(t) + w(t) , with c(t),w(t) ∈ C

c(t) associated with probability density functionRice distributionRayleigh distributionNakagami distribution

additive white noise w(t)

Transmission Scheme

x(t)

c(t) w(t)

y(t)digitalsource

digitalmodulator

digitaldemodulator

digitalsink

baseband channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communication Channel Passband Transmission

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Passband Transmission 37 / 140

Passband Transmission

Channel

real

center radian frequency ωc

bandwidth Bc

Bc

−ωc ωc ω

availablefrequency range

availablefrequency range

x0(t) y0(t)source transmitter

transmissionchannel

receiver sink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Passband Transmission 38 / 140

Passband Transmission

Transmission signal

real

center radian frequency ω0

bandwidth Bx

X0(jω)

Bx

−ω0 ω0 ω

x0(t) y0(t)source transmitter

transmissionchannel

receiver sink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Passband Transmission 39 / 140

Passband Transmission

Reception requires matched transmission signal

real

bandwidth Bx ≤ Bc

carrier radian frequency ω0

X0(jω) Bc

Bx

−ω0 ω0 ω

x0(t) y0(t)source transmitter

transmissionchannel

receiver sink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Passband Transmission 40 / 140

Passband Transmission

Equivalent baseband

channel is complex-valued

transmitter signal x(t) is complex-valued

receiver signal y(t) is complex-valued

X(jω)

Bc

Bxω

x0(t) y0(t)x(t) y(t)digitalsource

digitalmodulator

analogmodulator

transmissionchannel

analogdemodulator

digitaldemodulator

digitalesink

baseband channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communication Channel Baseband Transmission

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 41 / 140

Baseband Transmission

Resources of the channel

bandwidth Bc

dynamic Dc

duration Tc

x(t) y(t)

dynamic duration

bandwidth

Dc Tc

Bc

digitalsource

digitalmodulator

basebandchannel

digitaldemodulator

digitalsink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 42 / 140

Baseband Transmission

Transmitter signal

bandwidth Bx

dynamic Dx

duration Tx

x(t) y(t)

dynamic dynamicduration

duration

bandwidth bandwidth

Dx DxDcTx Tx Tc

Bx Bx

Bc

digitalsource

digitalmodulator

basebandchannel

digitaldemodulator

digitalsink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 43 / 140

Baseband Transmission

Transmitter signal matched to channel resources

bandwidth Bx ≤ Bc

dynamic Dx ≤ Dc

duration Tx ≤ Tc

x(t) y(t)

dynamic dynamic dynamicduration

duration

duration

bandwidth bandwidth bandwidth

Dx Dx DxDc DcTx Tx TxTc Tc

Bx Bx Bx

Bc Bc

digitalsource

digitalmodulator

basebandchannel

digitaldemodulator

digitalsink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 44 / 140

Baseband Transmission

Symbol mapping

matching of the signal dynamic Dx ≤ Dc

finite alphabet A

information in symbols u(tk) ∈ A

u(t) x(t) y(t) v(t)

dynamic dynamic dynamicduration

duration

duration

bandwidth bandwidth bandwidth

Dx Dx DxDc DcTx Tx TxTc Tc

Bx Bx Bx

Bc Bc

digitalsource

impulseshaping

basebandchannel

symbolrecovery

digitalsink

symbolmapping

inversesymbolmapping

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 45 / 140

Baseband Transmission

Impulse shaping

matching of the signal bandwidth Bx ≤ Bc

real pulse with finite energy q(t) ∈ R , Eq <∞crucial for symbol recovery

u(t) x(t) y(t) v(t)

dynamic dynamic dynamicduration

duration

duration

bandwidth bandwidth bandwidth

Dx Dx DxDc DcTx Tx TxTc Tc

Bx Bx Bx

Bc Bc

digitalsource

impulseshaping

basebandchannel

symbolrecovery

digitalsink

symbolmapping

inversesymbolmapping

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 46 / 140

Transmission Scheme

Transmission Scheme

1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

s(t)z(t)

δT (t− t0)

PAM v(t)

transmitter receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 46 / 140

Transmission Scheme

Transmission Scheme

1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

q(t)x(t)

r(t)z(t)

δT (t− t0)

PAM v(t)

transmitter receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 46 / 140

Transmission Scheme

Transmission Scheme

1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t)r(t)

z(t)

δT (t− t0)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 46 / 140

Transmission Scheme

Transmission Scheme

1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 47 / 140

Transmission Scheme

Transmission Scheme

5 low-pass band-limited pulse

Bx ≤ Bc

6 moderate timing jitter

|τ | T

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 47 / 140

Transmission Scheme

Transmission Scheme

5 low-pass band-limited pulse

Bx ≤ Bc

6 moderate timing jitter

|τ | T

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0 − τ)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 48 / 140

Transmission Scheme

Transmission Scheme

7 stochastic model for flat fading and noise

8 minimizing decision error probabilitytransmitted u(tk) ∈ A

received z(tk − τ) ∈ C

decided v(tk) = Qz(tk − τ) ∈ A

u(t)

δT (t− t0)

q(t)x(t)

c(t) w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0 − τ)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Baseband Transmission 48 / 140

Transmission Scheme

Transmission Scheme

7 stochastic model for flat fading and noise8 minimizing decision error probability

transmitted u(tk) ∈ A

received z(tk − τ) ∈ C

decided v(tk) = Qz(tk − τ) ∈ A

u(t)

δT (t− t0)

q(t)x(t)

c(t) w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0 − τ)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communication Channel Time-Discrete Transmission

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time-Discrete Transmission 49 / 140

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronizationτ = 0

2 no receiver filter, transmitter filter is Nyquist filterx(tk) = u(tk)

3 time-discrete channely(tk) = c(tk)x(tk) + w(tk)

4 decisionv(tk) = Qy(tk)

u(t)

δT (t− t0)

q(t)x(t)

c(t) w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time-Discrete Transmission 49 / 140

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronizationτ = 0

2 no receiver filter, transmitter filter is Nyquist filterx(tk) = u(tk)

3 time-discrete channely(tk) = c(tk)x(tk) + w(tk)

4 decisionv(tk) = Qy(tk)

u(t)

δT (t− t0)

s(t)x(t)

c(t) w(t)

y(t)

δT (t− t0)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time-Discrete Transmission 49 / 140

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronizationτ = 0

2 no receiver filter, transmitter filter is Nyquist filterx(tk) = u(tk)

3 time-discrete channely(tk) = c(tk)x(tk) + w(tk)

4 decisionv(tk) = Qy(tk)

replacements

u(t)

δT (t− t0)

s(t)x(t)

c(t) w(t)

y(t)

δT (t− t0)

PAM v(t)

time-discrete channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time-Discrete Transmission 49 / 140

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronizationτ = 0

2 no receiver filter, transmitter filter is Nyquist filterx(tk) = u(tk)

3 time-discrete channely(tk) = c(tk)x(tk) + w(tk)

4 decisionv(tk) = Qy(tk)

u(tk) = x(tk)

c(tk) w(tk)

y(tk)v(tk)

time-discrete channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time-Discrete Transmission 50 / 140

Time-Discrete Channel

Time-Discrete Channel

y(tk) = c(tk)x(tk) + w(tk)

Communication scenariodynamic du

ration

bandwidth

DxDc Tx Tc

Bx

Bc

u(tk)x(tk)

c(tk)w(tk)

y(tk)v(tk)Tx Rx

Find an optimal strategy to exploit the communication resources!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time-Discrete Transmission 51 / 140

Time-Discrete Channel

Time-Discrete Channel

y(tk) = c(tk)x(tk) + w(tk)

Communication limits

U

equivo

cation

mutual information

irrelev

ance

V

u(tk)x(tk)

c(tk)w(tk)

y(tk)v(tk)Tx Rx

Use information theory to determine the communication limits!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Single Input Single Output Systems

Wireless CommunicationsSingle Input Single Output Systems

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Single Input Single Output Systems

Contents

1 Signal Space

2 AWGN Channel

3 Flat fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Single Input Single Output Systems Signal Space

Contents

1 Signal Space

2 AWGN Channel

3 Flat fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 52 / 140

Signal Space

Digital modulator

u(t)digital

modulatorx(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si(Ωt2

), with ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 52 / 140

Signal Space

Digital modulator

u(t)

δT (t− t0)

s(t) x(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si(Ωt2

), with ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 52 / 140

Signal Space

Digital modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si(Ωt2

), with ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 52 / 140

Signal Space

Digital modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si(Ωt2

), with ΩT = 2π

Signaling at the Nyquist rate!Lehrstuhl fürDigitale KommunikationssystemeK. Ochs Wireless Communications WS 2016/17

Signal Space 53 / 140

Signal Space

Digital modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

Digitally modulated signal

x(t) =∞∑

k=−∞

u(tk) si(Ω

2[t − tk]

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 53 / 140

Signal Space

Digital modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

Digitally modulated signal

x(t) =∞∑

k=−∞

xkϕk(t)

Definitions

1 samples

xk = u(tk)

2 base functions

ϕk(t) = si(Ω

2[t − tk]

)−−• Φk(jω) = T rect

(2ωΩ

)e−jωtk

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 54 / 140

Signal Space

Scalar product

〈ϕk(t), ϕ`(t)〉 =∫ ∞

−∞ϕk(t)ϕ∗` (t)dt

Orthogonal base functions

〈ϕk(t), ϕ`(t)〉 = T

1 for k = `0 for k 6= `

Proof

1 〈ϕk(t), ϕ`(t)〉 =∫ ∞−∞ ϕk(t)ϕ∗` (t)dt

2 〈ϕk(t), ϕ`(t)〉 = 12π

∫ ∞−∞ Φk(jω)Φ∗` (jω)dω

3 〈ϕk(t), ϕ`(t)〉 = 12π

∫ ∞−∞ T2 rect

( 2ωΩ

)e−jω[tk−t`]dω

4 〈ϕk(t), ϕ`(t)〉 = T 1Ω

∫ Ω/2−Ω/2 e−jω[k−`]T dω

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 55 / 140

Signal Space

Energy

Ex =

∫ ∞

−∞|x(t)|2dt = T

∞∑k=−∞

|xk|2

Proof

1 Ex = 〈x(t), x(t)〉 = ‖x(t)‖2

2 Ex = 〈∞∑

k=−∞xkϕk(t),

∞∑`=−∞

x`ϕ`(t)〉

3 Ex =∞∑

k=−∞

∞∑`=−∞

xkx∗` 〈ϕk(t), ϕ`(t)〉

4 Ex = T∞∑

k=−∞|xk|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Signal Space 56 / 140

Signal Space

Signal vector (finite number of symbols)

x =[

x1, x2, . . . , xK]T

power

Px =Ex

T= ‖x‖2 , with ‖x‖2 = xHx =

K∑k=1

|xk|2

law of large numbers

1K

K∑k=1

|xk|2 ≈ E|X |2

relation to stochastic power

Px ≈ KPx , with Px = E|X |2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Single Input Single Output Systems AWGN Channel

Contents

1 Signal Space

2 AWGN Channel

3 Flat fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 57 / 140

Channel with Additive White Gaussian Noise

AWGN Channel

U

equivo

cation

mutual information

irrelev

ance

V

u(k)x(k)

1z(k)

y(k)v(k)Tx Rx

Remarkstransmitter sends message U to the receiverK channel uses: Tx = KT ≤ Tc , k ∈ 1, . . . ,K

transmitter signal x(k) ∈ C with limited power Px ≤ P

additive noise z(k) ∈ C

independent and identically distributednormal distribution, with zero mean and variance σ2

z = Pz

receiver signal y(k) ∈ C

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 57 / 140

Channel with Additive White Gaussian Noise

AWGN Channel

u(k)x(k)

1z(k)

y(k)v(k)Tx Rx

Remarks

transmitter sends message U to the receiver

K channel uses: Tx = KT ≤ Tc , k ∈ 1, . . . ,K

transmitter signal x(k) ∈ C with limited power Px ≤ P

additive noise z(k) ∈ Cindependent and identically distributednormal distribution, with zero mean and variance σ2

z = Pz

receiver signal y(k) ∈ C

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 58 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Signal flow diagram

x(k)

z(k)

y(k)

Mathematical model

y(k) = x(k) + z(k) , 1 ≤ k ≤ K

Px =1K

K∑k=1

|x(k)|2 ≤ P

z(k) ∼ N (0,Pz)

Communication

encoding of message U

x(k) ∈ C is a symbol of a finite alphabet A

y(k) ∼ N (x(k),Pz)

What is the highest reliable data rate over this channel?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 59 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Signal flow diagram

x

z

y

Mathematical model

y = x+ z

‖x‖ =√

KPx

‖z‖ =√

KPz

Remarks

transmitted signal vector x =[

x(1), . . . , x(K)]T

noise vector z =[

z(1), . . . , z(K)]T

received signal vector y =[

y(1), . . . , y(K)]T

Received vector y lies in a hypersphere with center x and radius√

KPz !

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 60 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

xz

y0

noise hypersphere

Mathematical model

y = x+ z

E‖y‖2 = E‖x‖2+ E‖z‖2x and z are independent

Remarks

E‖y‖ ≤√E‖y‖2 , Jensen’s inequality

E‖y‖2 = E‖x‖2+ E‖z‖2 , independence

E‖x‖2 ≈ KPx , E‖z‖2 ≈ KPz , law of large numbers

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 60 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

√ KPx

√KPz

E‖y‖≤√

K[Px +Pz]

noise hypersphere

Mathematical model

y = x+ z

E‖y‖2 = E‖x‖2+ E‖z‖2x and z are independent

Upper bound

E‖y‖ ≤√

K[Px + Pz]

All received signal vectors lie in a hypersphere of radius√

K[Px + Pz]!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 61 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Decoding

transmitted vector x is center of thehypersphere

M nonoverlapping hypersheres

received vector y within hypershperebelongs to the center x

How many noise hyperspheres fit into the received vector hypersphere?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 62 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

K complex dimensions

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 62 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ V2K(√

2K[Px + Pz])

V2K(√

2KPz)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 62 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ VK(2K[Px + Pz])

VK(2KPz)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 62 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ [1 + Px/Pz]K

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 62 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ [1 + Px/Pz]K

Upper bound for nonoverlapping hyperspheres

M ≤ [1 + ΓSNR]K , with ΓSNR =

Px

Pz=E|x(k)|2E|z(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 63 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Upper bound for the data rate

ld(M) ≤ K ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 63 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Upper bound for the data rate

R =ld(M)

K≤ ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Maximum data rate for a reliable communication?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 63 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Upper bound for the data rate

R =ld(M)

K≤ ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Maximum data rate for a reliable communication?

AWGN channel capacity

C = ld(1 + ΓSNR) in bits/channel use

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

AWGN Channel 63 / 140

Channel with Additive White Gaussian Noise

AWGN channel

Upper bound for the data rate

R =ld(M)

K≤ ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Maximum data rate for a reliable communication?

AWGN channel capacity

C = ld(1 + ΓSNR) in bits/channel use

This is only a heuristic approach!Information theory provides a fundamental derivation!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Single Input Single Output Systems Flat fading Channel

Contents

1 Signal Space

2 AWGN Channel

3 Flat fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 64 / 140

Flat fading Channel

Flat fading Channel

u(k)x(k)

h(k)z(k)

y(k)v(k)Tx Rx

Remarks

transmitter signal x(k) ∈ C with limited power Px ≤ P

channel gain h(k) ∈ Csmall-scale fading caused by echoes of the transmitted signaltransmitted signal period is larger than multi-path delay spread

additive noise z(k) ∈ Cindependent and identically distributed (i.i.d.)normal distribution, with zero mean and variance σ2

z = Pz

receiver signal y(k) ∈ C

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 65 / 140

Flat fading Channel

Flat fading Channel

x(k)

h(k) z(k)

y(k)

Channel capacity?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 65 / 140

Flat fading Channel

Flat fading Channel

x(k)

h(k) z(k)z(k)

y(k)y(k) h(k)x(k)

Idea

equivalent to AWGN channel

surrogate input signal is product of input signal times channel gain

time-variant signal to noise ratio

γSNR(k) =E|h(k)x(k)|2E|z(k)|2 = ΓSNR|h(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 65 / 140

Flat fading Channel

Flat fading Channel

x(k)

h(k) z(k)

y(k)

Idea

equivalent to AWGN channel

surrogate input signal is product of input signal times channel gain

time-variant signal to noise ratio

γSNR(k) =E|h(k)x(k)|2E|z(k)|2 = ΓSNR|h(k)|2

Channel capacity

C(k) = ld(1 + ΓSNR|h(k)|2) , with ΓSNR =E|x(k)|2E|z(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 66 / 140

Flat fading Channel

Rayleigh fading

Channel gain

distribution of real and imaginary part

Reh, Imh ∼ N (0, σ2)

transformation to polar coordinates h = re jϕ

magnitude r > 0 has Rayleigh distribution

fr(r) = u(r)rσ2 e−

r2

2σ2

phase ϕ ∈ (−π, π] has uniform distribution

fϕ(ϕ) =1

2πrect

(ϕπ

)Real- and imaginary part have zero-mean, which indicates no line of sight!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 67 / 140

Flat fading Channel

Rayleigh Distribution (σ = 1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

f r(r)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 68 / 140

Flat fading Channel

Rician fading

Channel gain

distribution of real and imaginary part

Reh ∼ N (µRe, σ2) , Imh ∼ N (µIm, σ

2)

transformation to polar coordinates h = re jϕ

magnitude r > 0 has Rice distribution

fr(r) = u(r)rσ2 I0

( rµσ2

)e−

r2+µ2

2σ2 , with µ =√µ2

Re + µ2Im

and modified Bessel function of the first kind with order zero I0

Rician factor K =µ

2σ2

K = 0 yields Rayleigh fading

Line of sight if Rician factor is greater than zero!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 69 / 140

Flat fading Channel

Rician Distribution (σ = 1)

0 1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

f r(r)

µ = 0µ = 0.5µ = 1µ = 2µ = 4

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 70 / 140

Flat fading Channel

Nakagami fading

Channel gain

sum of multiple i.i.d. Rayleigh fading signals has Nakagami distributedmagnitudemagnitude r > 0 has Nakagami distribution

fr(r) = u(r)2

Γ (m)

[mΩ

]mr2m−1 e−

mr2Ω ,

with

gamma function Γ (m) =

∫ ∞0

e−rrm−1dr

received signal average power Ω = Er2

shape factor m =Ω2

E[r −Ω]2≥

12

m = 1 yields Rayleigh fading

Useful to model urban radio multipath channels!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Flat fading Channel 71 / 140

Flat fading Channel

Nakagami Distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 30

0.2

0.4

0.6

0.8

1

1.2

1.4

r

f r(r

)

Ω = 1,m = 0.5Ω = 1,m = 1Ω = 2,m = 1Ω = 3,m = 1Ω = 1,m = 2Ω = 2,m = 2Ω = 1,m = 3

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Multiple Input Multiple Output Systems

Wireless CommunicationsMultiple Input Multiple Output Systems

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Input Multiple Output Systems

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Input Multiple Output Systems Transmission Scenario

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 72 / 140

MIMO passband transmitter

MIMO passband transmitter

u(t)

S

P

symbolmapping

symbolmapping

δT (t− t0)

δT (t− t0)

q(t)

q(t)

ejω0t

ejω0t

Re

Re

u1(t)

um(t)

x1(t)

xm(t)

x10(t)

xm0(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 73 / 140

MIMO passband receiver

MIMO passband receiver

PAM

PAM

ejω0t

ejω0t

LP

LP

r(t)

r(t)

δT (t− t0)

δT (t− t0)

detection

v(t)

w10(t)

wn0(t)

y10(t)

yn0(t)

y1(t)

yn(t)

v1(t)

vn(t)

Instead of single decisions a combined detection of transmitted symbols!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 74 / 140

MIMO passband transmission

MIMO passband transmitter

m transmit antennas

symbol vector u(tk) ∈ Am , with u(t) =[

u1(t), . . . , um(t)]T

equivalent low-pass signal vector x(t) =∞∑

k=−∞

u(tk)q(t − tk)

baseband signal vector x0(t) = Rex(t)e jω0t

,

with x0(t) =[

x10(t), . . . , xm0(t)]T

MIMO passband receiver

n receive antennas

additive noise w0(t) =[

w10(t), . . . ,wn0(t)]T

baseband signal y0(t) =[

y10(t), . . . , yn0(t)]T

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 75 / 140

MIMO baseband transmission

MIMO baseband transmission

AM

AM

u(t)

S

P

P

P

symbolmapping

symbolmapping

δT (t− t0)

δT (t− t0)

δT (t− t0)

δT (t− t0)

q(t)

q(t)

u1(t)

um(t)

x1(t)

xm(t)

c11(t)

cn1(t)

c1m(t)

cnm(t)

r(t)

r(t)

detection

v(t)

w1(t)

wn(t)

y1(t)

yn(t)

v1(t)

vn(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 76 / 140

MIMO baseband transmission (simplified)

MIMO baseband transmission (simplified)

AM

AM

u(t)

S

P

P

P

symbolmapping

symbolmapping

δT (t− t0)

δT (t− t0)

δT (t− t0)

δT (t− t0)

s(t)

s(t)

u1(t)

um(t)

x1(t)

xm(t)

h11(t)

hn1(t)

h1m(t)

hnm(t)

detection

v(t)

z1(t)

zn(t)

y1(t)

yn(t)

v1(t)

vn(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 77 / 140

MIMO digital baseband transmission

MIMO digital baseband transmission

u(k)

x1(k)

xm(k)

h11(k)

hn1(k)

h1m(k)

hnm(k)

z1(k)

zn(k)

y1(k)

yn(k)

v(k)Tx Rx

Flat fading channel

y1(k)...

yn(k)

=

h11(k) · · · h1m(k)...

. . ....

hn1(k) · · · hnm(k)

x1(k)

...xm(k)

+

z1(k)...

zn(k)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Transmission Scenario 78 / 140

MIMO digital baseband transmission

MIMO digital baseband transmission

Eu(k) Txx(k)

H(k)z(k)

y(k)v(k)

Transmitter

maps message U to signal x(k)

transmitter signal has limited powerFlat fading channel

y(k) =H(k)x(k) + z(k)

channel matrix has almost sure full rankReceiver

knows the channel state from estimationretrieves message V from signal y(k)

Channel capacity?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Input Multiple Output Systems MIMO Detectors

Contents

1 Transmission Scenario

2 MIMO DetectorsZero-Forcing DetectorMinimum Mean-Squared Error DetectorMaximum Likelihood Detector

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors 79 / 140

MIMO Detectors

MIMO Detector

x(k)

H(k) z(k)

y(k) MIMO-detector

x(k)

Remarks

m transmit and n receive antennas

flat fading channel

y(k) =H(k)x(k) + z(k)

channel matrix has (almost sure) full rank

H(k) ∈ Cn×m , with rankH(k) = minm, n

MIMO detector estimates transmitted signalLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Zero-Forcing Detector 80 / 140

Zero-Forcing Detector

Scenario 1

same number of antennas at transmitter and receiverrank(H(k)) = m = n

equation system

x(k)H(k) z(k)y(k) +=

Detection

x =H−1y ⇒ x = x+H−1z

Remarks

simple case

multiplication with H−1 can significantly amplify the noiseLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Zero-Forcing Detector 81 / 140

Zero-Forcing Detector

Scenario 2

more transmit antennas than receive antennas

rank(H(k)) = n < m

m− n times underdetermined equation system

x(k)H(k) z(k)z(k)y(k) +=

Detection

x =H sy + [1−H sH]v , v arbitrary ⇒ Hx =Hx+HH sz

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Zero-Forcing Detector 82 / 140

Zero-Forcing Detector

Remarks

semi-inverse H s , with HH sH =H and H sHH s =H s

Moore-Penrose right pseudoinverse can be usedH s =H+ =HH[HHH]−1

1−H sH is projection matrix to null space of H

Hx =HH sy

multiplication with HH s can significantly amplify the noise

Improper approach because of infinite many solutions!

Remedy

time variance of the channel is helpful

sent x again to increase number of linearly independent equationsLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Zero-Forcing Detector 83 / 140

Zero-Forcing Detector

Scenario 3

more receive antennas than transmit antennas

rank(H(k)) = m < n

n− m times overdetermined equation system

x(k)H(k) z(k)z(k)y(k) +=

Detection

x =H+y ⇒ x = x+H+z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Zero-Forcing Detector 84 / 140

Zero-Forcing Detector

Remarks

Moore-Penrose left pseudoinverse H+ = [HHH]−1HH

multiplication with H+ can significantly amplify the noise

Solution is an optimal approximation!

Optimization problem

x = arg

minxJ

, with J = ‖y −Hx‖2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Zero-Forcing Detector 85 / 140

Zero-Forcing Detector

Solution

necessary and sufficient conditions

∂J∂x

= 0T and∂J∂xH = 0

Wirtinger derivatives, x and xH independent

J = J∗ ⇒ ∂J∂x

=

[∂J∂xH

]H

,∂J∂x

= 0T ⇔ ∂J∂xH = 0

J = [yH − xHHH][y −Hx]

∂J∂xH = −HH[y −Hx]

HHy =HHHx

x =[HHH

]−1HHy

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Minimum Mean-Squared Error Detector 86 / 140

Minimum Mean-Squared Error Detector

Detection

x =Dy , with y =Hx+ z

A minimum mean-squared error detector considers noise!

Optimization problem

D = arg

minDJ

, with J = E‖x− x‖2

Approach

J = J∗

necessary and sufficient conditions

∂J∂D

= 0T and∂J∂DH = 0

Wirtinger derivatives, D and DH independentLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Minimum Mean-Squared Error Detector 87 / 140

Minimum Mean-Squared Error Detector

Realness

J = J∗

necessary and sufficient condition

∂J∂DH = 0

Some basics

‖x‖2 = xHx = tr(xxH)

E‖x‖2

= tr

(ExxH)

∂Mtr (AMB) = ATBT

Kxy = ExyH

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Minimum Mean-Squared Error Detector 88 / 140

Minimum Mean-Squared Error Detector

Error reformulation

x− x = x−Dy

[x−Dy][xH − yHDH] = xxH −DyxH +DyyHDH − xyHDH

J = tr(Kxx −DKyx +DKyyDH −KxyD

H)

J = tr(Kxx)− tr(DKyx) + tr(DKyyDH)− tr(KxyD

H)

Solution

∂J∂DH = [DKyy]

T −KTxy

DKyy =Kxy

D =KxyK−1yy

Regularity of Kyy is assumed!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Minimum Mean-Squared Error Detector 89 / 140

Minimum Mean-Squared Error Detector

Uncorrelation

x,z uncorrelated

Kxy = Ex[xHHH + zH] =KxxH

H

Kyy = E[Hx+ z]

[xHHH + zH] =Kzz +HKxxH

H

Detection matrix

D =KxxHH [Kzz +HKxxH

H]−1

Solution

x =KxxHH [Kzz +HKxxH

H]−1[Hx+ z]

Solution plausible?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Minimum Mean-Squared Error Detector 90 / 140

Minimum Mean-Squared Error Detector

Simplifying assumptions

1 Symbols and noise are spatially uncorrelated

Kxx = Px1 , Kzz = Pz1 , with Pz = σ2z

Detection matrix

D =HH[HHH +

1ΓSNR

1]−1

, with ΓSNR =Px

Pz

2 No noise

z = 0 , Pz = 0 ,1

ΓSNR= 0 , Kyy = PxHH

H

Detection matrix

D =H+ , with H+ =HH [HHH]−1

This MMSE detector is weak for high SNR and m < n!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Maximum Likelihood Detector 91 / 140

Maximum Likelihood Detector

Stochastic channel model

y =Hx+ z with known fy|x(y|x)

Detection

x = arg

maxx∈Am fy|x(y|x)

Interpretation

fy|x(y|x) ≥ fy|x(y|x) for all x ∈ Am

A maximum likelihood detector chooses the most likely sent x!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Maximum Likelihood Detector 92 / 140

Maximum Likelihood Detector

Reformulation

z = y −Hxfy|x(y|x) = fz(y −Hx)

Intermediate result

x = arg

maxx∈Am fz(y −Hx)

Simplifying assumptions

1 circularly symmetric complex Gaussian random variables

fz =1

det(πKzz)exp(−zHK−1

zzz)

2 spatially uncorrelated noise

Kzz = Pz1 , with Pz = σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

MIMO Detectors Maximum Likelihood Detector 93 / 140

Maximum Likelihood Detector

Intermediate results

fz =1

[πσ2z ]n

exp(− 1σ2

z‖z‖2

)x = arg

maxx∈Am

1

[πσ2z ]n

exp(− 1σ2

z‖y −Hx‖2

)Exponential function is strictly monotonically increasing!

Solution

x = arg

minx∈Am

‖y −Hx‖

Remarks

geometrical task to find x ∈ Am, such that Hx has minimal distance to ythere are |A|m possible vectors x ∈ Am

Effort increases exponentially with the number of transmit antennas!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Input Multiple Output Systems Random Channels

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random ChannelsSpatially Uncorrelated ChannelSpatially Correlated Channel

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Random Channels 94 / 140

Random MIMO Channel

Random MIMO Channel

x(k)

H(k) z(k)

y(k)

flat fading (frequency-non-selective)

channel matrix H(k) has (almost sure) full rank

elements hµν(k) of H(k) are random variables

Random channel matrix!

Example

no line of sight between transmit antenna µ and receive antenna ν

modeled e. g. with Rayleigh-distributed |hνµ(k)|Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Random Channels Spatially Uncorrelated Channel 95 / 140

Spatially Uncorrelated Channel

Independent and Identically Distributed Random MIMO Channel

Elements hµν(k) of channel matrix

independent and identically distributed random variables

zero-mean

Ehµν(k) = 0

spatially uncorrelated

Ehνµ(k)hλκ(k) =σ2 for ν = λ and µ = κ0 otherwise

Correlation matrix of the channel matrix

KHH = σ21 , with KHH = E

vec(H)vec(H)H =KHHH

Spatially uncorrelated MIMO channels are of minor practical importance!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Random Channels Spatially Correlated Channel 96 / 140

Spatially Correlated Channel

Dense Antenna Array

improved directional characteristiccorrelation between antenna signals

Spatially Correlated Channel

x(k)

√Kx(k) HIID(k)

√Ky(k)

Hz(k)

y(k)

at transmitter Kx =KHx ≥ 0 , with Kx =

√Kx

H√Kx

at receiver Ky =KHy ≥ 0 , with Ky =

√Ky

H√Ky

Random channel matrix

H =√Ky

HHIID√Kx

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Random Channels Spatially Correlated Channel 97 / 140

Spatially Correlated Channel

Intermediate calculations

vec(H) = vec(√

KyHHIID√Kx

)=[√Kx

T ⊗√Ky

H]

vec(HIID)

vec(H)H = vec(HIID)H[√Kx∗ ⊗

√Ky

]Derivation of the channel correlation matrix

KHH =[√Kx

T ⊗√Ky

H]E

vec(HIID)vec(HIID)H [√Kx

∗ ⊗√Ky

]= σ2

[√Kx

T ⊗√Ky

H] [√

Kx∗ ⊗

√Ky

]= σ2

[√Kx

T√Kx∗]⊗[√Ky

H√Ky

]= σ2

[√Kx

H√Kx

]∗⊗[√Ky

H√Ky

]Channel correlation matrix

KHH = σ2K∗x ⊗Ky

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Input Multiple Output Systems Eigenmode Decomposition

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode DecompositionSingular Value DecompositionEigenmodes of a MIMO Channel

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Singular Value Decomposition 98 / 140

Singular Value Decomposition

Singular Value Decomposition

H = UΣV H =[U1 U2

] [ Σr 00 0

] [V H

1

V H2

]with

H ∈ Cn×m , r = rank(H) ≤ minm, n

U ∈ Cn×n , UHU = UUH = 1n , U1 ∈ Cn×r , U2 ∈ Cn×n−r

V ∈ Cm×m , V HV = V V H = 1m V1 ∈ Cm×r , V2 ∈ Cm×m−r

Σ ∈ Cn×m , Σr = diag(σ1, . . . , σr) > 0

For every matrix H ∈ Cn×m with rank r there exists asingular value decomposition with positive singular values σ1, . . . , σr!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Eigenmodes of a MIMO Channel 99 / 140

Eigenmodes of a MIMO Channel

Scenario

PSfrag

x(k)Pre-

Encoder

x′(k)

H(k) z′(k)

y′(k)Post-

Encodery(k)

Receiver and transmitter have channel state information (CSIT)

Channel

y′ =Hx′ + z′

Encoders

use encoders to decouple transmission paths

exploit singular value decomposition

H = UΣV H ⇔ UHHV = Σ

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Eigenmodes of a MIMO Channel 100 / 140

Eigenmodes of a MIMO Channel

Scenario

PSfrag

x(k)

V (k)

x′(k)

H(k) z′(k)

y′(k)

UH(k)

y(k)

Encoders

pre-encoding

x′ = V x

post-encoding

y = UHy′

Encoded channel

y = UH [HV x+ z′]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Eigenmodes of a MIMO Channel 101 / 140

Eigenmodes of a MIMO Channel

Scenario

x(k)

V (k)

x′(k)

H(k) UH(k) UH(k)z′(k)

y(k)

Equivalent channel

y = UHHV x+UHz′

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Eigenmodes of a MIMO Channel 101 / 140

Eigenmodes of a MIMO Channel

Scenario

x(k)

Σ(k) z(k)

y(k)

Equivalent channel

y = Σx+ z

with

encoded channel

Σ = UHHV

encoded noise

z = UHz′ , with ‖z‖2 =∥∥z′∥∥2

Noise power conserved after unitary transformation!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Eigenmodes of a MIMO Channel 101 / 140

Eigenmodes of a MIMO Channel

Scenario

x(k)

Σ(k) z(k)

y(k)

Equivalent channel

y = Σx+ z

[yr

yn−r

]=

[Σr 00 0

] [xr

xm−r

]+

[zr

zn−r

]

yν = σνxν + zν for ν = 1, . . . , ryν = zν for ν = r + 1, . . . , n

Encoding yields r (relevant) parallel SISO channels!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Eigenmode Decomposition Eigenmodes of a MIMO Channel 102 / 140

Eigenmodes of a MIMO Channel

Unitary transformation

Noise with circularly-symmetric and zero mean complex normal distribution

z = UHz′

z′ ∼ N (0,Kz′z′) i. e. f ′z(z) =exp(−zHK−1

z′z′z)

|πKz′z′ |

z ∼ N (0,Kzz) , Kzz = UHKz′z′U

In addition, spatially uncorrelated with identical power

Kz′z′ = σ2z 1

z ∼ N(

0, σ2z 1)

, Kzz =Kz′z′

Stochastic properties conserved after unitary transformation!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Input Multiple Output Systems Capacity and Degrees of Freedom

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of FreedomCapacityDegrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Capacity 103 / 140

Capacity of SISO Channels

Capacity of SISO Channels

AWGN channel

x(k)

z(k)

y(k)

C = ld(1 + ΓSNR) , with ΓSNR =Px

Pz=E|x(k)|2E|z(k)|2

Flat fading Channel

x(k)

h(k) z(k)

y(k)

C(k) = ld(1 + ΓSNR|h(k)|2)

Capacity of a MIMO channel?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Capacity 104 / 140

Capacity of MIMO Channels

Capacity of a Decomposed MIMO Channel

Parallel SISO channels

x (k)

σ (k) z(k)

y(k)

y% = σ% x% + z% for % = 1, . . . , r

Simplifying assumption

ΓSNR =E|x%(k)|2E|z%(k)|2

Capacity

C(k) =r∑

%=1

C%(k) , with C%(k) = ld(1 + ΓSNRσ2% )

Reformulation independent from singular value decomposition?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Capacity 105 / 140

Capacity of MIMO Channels

Capacity of a Decomposed MIMO Channel

C(k) =r∑

%=1

ld(1 + ΓSNRσ2% )

Refomulation

1r∑

%=1ld(ξ%) = ld

(r∏

%=1ξ%

)

C(k) = ld

(r∏

%=1

[1 + ΓSNRσ

2%

])

2 ld

(r∏

%=1ξ%

)= |diag(ξ%)|

C(k) = ld(∣∣∣diag(1 + ΓSNRσ

2% )∣∣∣)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Capacity 106 / 140

Capacity of MIMO Channels

Refomulation

3 diag(1 + ξ%) = 1 + diag(ξ%) , diag(αξ%) = α diag(ξ%) ,

C(k) = ld(∣∣∣1 + ΓSNR diag(σ2

% )∣∣∣)

4 diag(ξ2%) = diag(ξ%)2

C(k) = ld(∣∣∣1 + ΓSNRΣ

2r )∣∣∣)

5

∣∣∣∣[ A 00 1

]∣∣∣∣ = |A|C(k) = ld

(∣∣1m + ΓSNRΣHΣ∣∣)

6 HHH = V ΣHΣV H i. e. ΣHΣ = V HHHHV

C(k) = ld(∣∣V H [1m + ΓSNRH

HH]V∣∣)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Capacity 107 / 140

Capacity of MIMO Channels

Refomulation

7 |AB| = |A| |B| ,∣∣A−1

∣∣ = |A|−1

C(k) = ld(∣∣1m + ΓSNRH

HH∣∣)

8 |1n +AB| = |1m +BA| for A ∈ Cn×m , B ∈ Cm×n

C(k) = ld(∣∣1n + ΓSNRHH

H∣∣)Hint

n ≤ m

C(k) = ld(∣∣1n + ΓSNRH(k)HH(k)

∣∣)m ≤ n

C(k) = ld(∣∣1m + ΓSNRH

H(k)H(k)∣∣)

No need for singular value decomposition!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Capacity 108 / 140

Capacity of MIMO Channels

Capacity of a MIMO Channel

C(k) = maxKxx

ld(∣∣Kzz +HKxxH

H∣∣)− ld (|Kzz|)

s. t. trace(Kxx) ≤ P

This is a (convex) optimization problem!

Special case

Kxx = Px1 , Kzz = σ2z 1 , ΓSNR =

Px

σ2z

C(k) = ld(∣∣1n + ΓSNRH(k)HH(k)

∣∣)Capacity of r parallel SISO channels with constant signal to noise ratio!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = limΓSNR→∞

ld(1+|σ|2ΓSNR)ld(ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = limΓSNR→∞

ld(|σ|2ΓSNR)ld(ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = limΓSNR→∞

[ld(|σ|2)ld(ΓSNR)

+ 1]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

MIMO channel

η = limΓSNR→∞

r∑%=1

ld(1+σ2%ΓSNR)

ld(ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

MIMO channel

η =r∑

%=1lim

ΓSNR→∞

ld(1+σ2%ΓSNR)

ld(ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

MIMO channel

η =r∑

%=11

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

MIMO channel

η = r

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 109 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

MIMO channel

η = r

The degrees of freedoms are equal to the rank of the channel matrix!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 110 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

Interpretation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 110 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

Interpretation

η = limΓSNR→∞

Cld(ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 110 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

Interpretation

η = limΓSNR→∞

Cld(1+ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 110 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

Interpretation

η = limΓSNR→∞

Cld(1+|σ|2ΓSNR)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Capacity and Degrees of Freedom Degrees of Freedom 110 / 140

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

Interpretation

η = limΓSNR→∞

CCSISO

Multiplexing gain

C ≈ ηCSISO for ΓSNR →∞

Asymptotic measurement for the high signal to noise ratio regime!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Optimal Transmission Strategies

Wireless CommunicationsOptimal Transmission Strategies

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Optimal Transmission Strategies

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Optimal Transmission Strategies Maximum Ratio Combining

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 111 / 140

Maximum Ratio Combining

Scenario

w(k) Txx(k)

h1(k)

hn(k)

z1(k)

zn(k)

y1(k)

yn(k)

Rx w(k)

Transmitter has no channel state information (no CSIT)

Channel

y(k) = h(k)x(k) + z(k) , with Kzz = σ2z 1

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 112 / 140

Maximum Ratio Combining

Strategy

x(k) = hH(k)y(k)

Channel with strategy

x(k)

‖h(k)‖2 hH(k)z(k)

x(k)

x(k) = ‖h(k)‖2x(k) + hH(k)z(k)

Maximum achievable data rate?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = E|‖h(k)‖2x(k)|2E|hH(k)z(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖4E|x(k)|2EhH(k)z(k)zH(k)h(k)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖4PxhH(k)Kzzh(k)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖4Pxσ2

zhH(k)h(k)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)Capacity of the (MIMO) channel

C(k) ≤ ld(1 + hH(k)h(k)ΓSNR

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Combining 113 / 140

Maximum Ratio Combining

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)Capacity of the (MIMO) channel

C(k) ≤ ld(1 + hH(k)h(k)ΓSNR

)Performance of strategy

Rmax(k) = C(k)

Maximum ratio combining is optimal!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Optimal Transmission Strategies Maximum Ratio Transmission

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 114 / 140

Maximum Ratio Transmission

Scenario

w(k) Tx

x1(k)

xm(k)

h1(k)

hm(k)

z(k)

y(k)Rx w(k)

feed-back channel

Transmitter has perfect channel state information (CSIT)

Channel

y(k) = hH(k)x(k) + z(k) , with Pz = σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 115 / 140

Maximum Ratio Transmission

Strategy

x(k) =h(k)‖h(k)‖w(k)

Channel with strategy

w(k)

‖h(k)‖ z(k)

y(k)

y(k) = ‖h(k)‖w(k) + z(k)

Maximum achievable data rate?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) = E|‖h(k)‖w(k)|2E|z(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) = ‖h(k)‖2E|w(k)|2σ2

z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) =‖h(k)‖2E

∥∥∥ h(k)‖h(k)‖ w(k)

∥∥∥2

σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) =‖h(k)‖2E‖x(k)‖2

σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Maximum Ratio Transmission 116 / 140

Maximum Ratio Transmission

Signal to noise ratio

γSNR(k) = ‖h(k)‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)Capacity of the (MIMO) channel

C(k) ≤ ld(1 + hH(k)h(k)ΓSNR

)Performance of strategy

Rmax(k) = C(k)

Maximum ratio transmission is optimal!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Optimal Transmission Strategies Water Filling

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 117 / 140

Water Filling

Scenario

w(k)

x1(k)

xm(k)

h11(k)

hn1(k)

h1m(k)

hnm(k)

z1(k)

zn(k)

y1(k)

yn(k)

w(k)Tx Rx

feed-back channel

Transmitter has perfect channel state information (CSIT)

Problem

Power allocation strategy to achieve maximum data rate?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 118 / 140

Water Filling

Prerequisite

CSIT allows for singular value decomposition

exploit SVD to reduce problem to parallel SISO channels

r = rank(H) , with H = UΣV H ,

same noise power at each receiver antenna

Pz% = Pz = σ2z for % = 1, . . . , r = rank(H)

variable transmit signal power

Px% = α%Px , with α% ≥ 0

limited total transmit power

E‖x(k)‖2 ≤ mPx , respectively Px

r∑%=1

α% ≤ mPx

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 119 / 140

Water Filling

Equivalent Scenario

w(k)

α1

αr

x1(k)

xr(k)

σ1(k)

σr(k)

z1(k)

zr(k)

y1(k)

yr(k)

w(k)Tx Rx

feed-back channel

Transmitter has perfect channel state information (CSIT)

Reduced problem

Power allocation strategy to achieve maximum data rate?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 120 / 140

Water Filling

Equivalent parallel SISO channels

y%(k) = σ(k)√α%(k)x%(k) + z%(k) for % = 1, . . . , r = rank(H)

Capacity

C = maxα1,...,αr

r∑

%=1

ld(

1 + α%σ2%ΓSNR

)r∑

%=1

α% ≤ m

α% ≥ 0

How to compute this maximum?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 121 / 140

Water Filling

Optimization problem formulation

minα f (α) s. t. g(α) ≤ 0 , α 0

Objective function

f (α) = −r∑

%=1

ld(

1 + α%σ2%ΓSNR

)differentiable, convex

Inequality constraint

g(α) =r∑

%=1

α% − m

differentiable, convex

Convex optimization problem!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 122 / 140

Water Filling

Karush-Kuhn-Tucker conditions In particular

1 µ ≥ 0 1 µ = 0 or µ > 0

2 f ′(α) + µg′(α) = 0T2 − σ2

%ΓSNR

ln(2)[1 + α%σ2

%ΓSNR] + µ = 0

for % = 1, . . . , r

3 µg(α) = 0 3 µ

[r∑

%=1

α% − m

]= 0

4 g(α) ≤ 0 4

r∑%=1

α% − m ≤ 0

For this convex optimization problem the Karush-Kuhn-Tucker conditionsare not only necessary but also sufficient!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 123 / 140

Water Filling

Consequences

2 ⇒ µ =σ2%ΓSNR

ln(2)[1 + α%σ2

%ΓSNR] > 0

1 is feasible

3 ⇒r∑

%=1

α% = m

4 is feasible

2 ⇒ α% =1

µ ln(2)− 1σ2%ΓSNR

α 0 ⇒ α% ≥ 0

Solution

α% =

(1

µ ln(2)− 1σ2%ΓSNR

)+

for % = 1, . . . , r

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Water Filling 124 / 140

Water Filling

Water Filling Algorithm σ1 ≥ σ2 ≥ · · · ≥ σr > 0

1 2 3 4 • • • r − 1 r

1σ21ΓSNR

1σ22ΓSNR

1σ23ΓSNR

1µ ln(2)

1σ24ΓSNR

1σ2r−1

ΓSNR

1σ2rΓSNR

α1 α

2

α3

α4=0

αr−1=0

αr=0

•••

Who has will be given more!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Wireless Communications Multiple Access Channel

Wireless CommunicationsMultiple Access Channel

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Access Channel

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Access Channel Scenario

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Scenario 125 / 140

Scenario

Scenario

w1(k)

w2(k)

Tx1

Tx2

x1(k)

x2(k)

h∗1

h∗2

z(k)

y(k)Rx w1(k), w2(k)

Transmitters have no channel state information

Channel

y(k) = hHx(k) + z(k) , with Kxx = diag(Px1 ,Px2)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Scenario 126 / 140

Scenario

Signal flow diagram

x1(k)

x2(k)

h∗1

h∗2

z(k)

y(k)

Channel

y(k) = h∗1 x1(k) + h∗2 x2(k) + z(k)

Objective

R1 + R2 → max

Optimal transmission strategy?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Access Channel Time Division Multiple Access

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time Division Multiple Access 127 / 140

Time Division Multiple Access

Time Division Multiple Access Strategy

x1(k)

x2(k)

k ∈ K1

k ∈ K2

h∗1

h∗2

z(k)

y(k)

Transmitter Tx1

k ∈ K1 = 1, . . . ,κ

1K

κ∑k=1

P1 ≤ Px1

worst case κ = K, (K2 = ∅)P1 ≤ Px1

Transmitter Tx2

k ∈ K2 = κ + 1, . . . ,K

1K

K∑k=κ+1

P2 ≤ Px2

worst case κ = 0, (K1 = ∅)P2 ≤ Px2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time Division Multiple Access 128 / 140

Time Division Multiple Access

Channel usage proportions

Tx1: α =κK

Tx2: 1− α

Maximum achievable data rates

Tx1: R1 ≤ αC1 ,

with C1 = ld(

1 + |h1|2 P1

σ2z

) Tx2: R2 ≤ [1− α]C2 ,

with C2 = ld(

1 + |h2|2 P2

σ2z

)

Rate region

R2 ≤ C2 − C2

C1R1

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time Division Multiple Access 129 / 140

Time Division Multiple Access

TDMA Rate Region

0 C10

C2

TDMA

α = 0

α = 1

R1

R2

Optimal strategy?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Access Channel Time Sharing

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time Sharing 130 / 140

Time Sharing

Time Sharing Strategy

x1(k)

x2(k)

k ∈ K1

k ∈ K2

1√α

1√1−α

h∗1

h∗2

z(k)

y(k)

Transmitter Tx1

k ∈ K1 = 1, . . . ,κ

1K

κ∑k=1

P1 ≤ Px1

average power constraint

P1 ≤ Px1

α, α 6= 0

Transmitter Tx2

k ∈ K2 = κ + 1, . . . ,K

1K

K∑k=κ+1

P2 ≤ Px2

average power constraint

P2 ≤ Px2

1− α , α 6= 1Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time Sharing 131 / 140

Time Sharing

Maximum achievable data rates

Transmitter Tx1

R1 ≤ α ld(

1 + |h1|2 P1

ασ2z

),

with C1 = R1|α=1

Transmitter Tx2

R2 ≤ [1− α] ld(

1 + |h2|2 P2

[1− α]σ2z

),

with C2 = R2|α=0

Rate region

(R1(α),R2(α)) , with α ∈ [0, 1]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Time Sharing 132 / 140

Time Sharing

Time Sharing Rate Region

0 C10

C2

TDMA

Time-Sharing

α = 0

α = 1

R1

R2

Optimal strategy?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Multiple Access Channel Successive Interference Cancelation

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 133 / 140

Successive Interference Cancelation

Upper Bounds

1 Tx1 transmits only

R1 ≤ C1 , with C1 = ld(

1 + |h1|2 P1

σ2z

)

2 Tx2 transmits only

R2 ≤ C2 , with C2 = ld(

1 + |h2|2 P2

σ2z

)

3 Tx1, Tx2 are cooperating (MISO)

R2 ≤ −R1 + C , with C = ld(

1 + |h1|2 P1

σ2z+ |h2|2 P2

σ2z

)

Are the upper bounds achievable?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 134 / 140

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

R1

R2

Upper bounds achievable?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 134 / 140

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Upper bounds achievable?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 135 / 140

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld(

1 + |h1|2 P1

σ2z+ |h2|2 P2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 135 / 140

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld(

1 + |h1|2 P1

σ2z+ |h2|2 P2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

R12 ≤ ld(

1 + |h2|2 P2

σ2z+ |h1|2 P1

σ2z

)− ld

(1 + |h2|2 P2

σ2z

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 135 / 140

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld(

1 + |h1|2 P1

σ2z+ |h2|2 P2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

R12 ≤ ld(

1 +|h1|2P1

σ2z + |h2|2P2

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 135 / 140

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld(

1 + |h1|2 P1

σ2z+ |h2|2 P2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

R12 ≤ ld(

1 +|h1|2P1

σ2z + |h2|2P2

)Successive interference cancelation strategy

1 receiver decodes x1 treating x2 as noise : R1 = R12

2 receiver cancels x1 by decoding x2 from y− h∗1 x1 : R2 = C2

Point (R12,C2) is achievable!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 136 / 140

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 137 / 140

Successive Interference Cancelation

Known upper bound

3 R2 ≤ ld(

1 + |h1|2 P1

σ2z+ |h2|2 P2

σ2z

)− R1

Achievability

(R1,R2) = (C1,R21)

R21 ≤ ld(

1 +|h2|2P2

σ2z + |h1|2P1

)Successive interference cancelation strategy

1 receiver decodes x2 treating x1 as noise : R2 = R21

2 receiver cancels x2 by decoding x1 from y− h∗2 x2 : R1 = C1

Point (C1,R21) is achievable!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 138 / 140

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 139 / 140

Successive Interference Cancelation

Achievable points

1 Tx1 transmits only

(R1,R2) = (C1, 0)

2 Tx2 transmits only

(R1,R2) = (0,C2)

3 receiver successively cancels interference

(R1,R2) = (C1,R21)

4 receiver successively cancels interference

(R1,R2) = (R12,C2)

Use TDMA of the particular strategiesto achieve points on the connecting line!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17

Successive Interference Cancelation 140 / 140

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Successive interference cancelation is an optimal strategy!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2016/17