Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel...

57
Wireless Channel Modeling 1 Hata Model An empirical formula for propagation loss Based on Okumura’s measurement data Propagation loss between isotropic antenna Only for Quasi-smooth terrain Standard formula : urban area propagation loss The propagation loss in an urban area A , B – functions of frequency(MHz) and antenna height (m) R – distance (km) System designs for land mobile radio services Frequency : 100 ~ 1500 (MHz) , Distance : 1 ~ 20 (km) Base station antenna height : 30 ~ 200 (m) Vehicular antenna height : 1 ~ 10 (m) R B A L p 10 log + =

Transcript of Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel...

Page 1: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 1

Hata Model

An empirical formula for propagation lossBased on Okumura’s measurement dataPropagation loss between isotropic antennaOnly for Quasi-smooth terrainStandard formula : urban area propagation loss

The propagation loss in an urban area

A , B – functions of frequency(MHz) and antenna height (m)R – distance (km)

System designs for land mobile radio servicesFrequency : 100 ~ 1500 (MHz) , Distance : 1 ~ 20 (km)Base station antenna height : 30 ~ 200 (m)Vehicular antenna height : 1 ~ 10 (m)

RBALp 10log+=

Page 2: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 2

Propagation Loss Between Isotropic Antenna

Received Power Pr

Propagation Loss Lp

)(log10)/()( 102

effur AmdBmPdBmP +=

antennaisotropicanofstrengthfieldReceived:densitypowerReceived:

antennaistropicanofsectioncrossAbsorption:90)120(log10)/()/(

4/

102

2

EP

AmVdBEmdBmP

A

u

eff

u

eff

−−=

=

πμ

πλ

8.145)4/(log10)/()()(

210 +−−=

−=πλμ mVdBEdBWP

PPdBL

t

rtp

antennaistropicanofpowerradiatedEffective:tP

Page 3: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 3

Okumura’s Prediction Curves and Propagation Loss

Transform the unit from ERP/dipole to EIRPAbsolute power gain of the dipole antenna : 2.2 dB

Pt (dBW EIRP) = 32.2 dB [when Pt’ = 1 kW (ERP/dipole)]

Propagation Loss Lp ( between the isotropic antenna )

)(2.2)/(')( dBdipoleERPdBWPEIRPdBWP tt +=

)/(log2045.139

)/()4/(log10178)(

10

210

mVdBEf

mVdBEdBL

c

p

μ

μπλ

−+=

−−=

antennaisotropicanofstrengthfieldReceived:)(frequencycarrier:where

EMHzfc

Page 4: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 4

Empirical Formula for Propagation Loss

The field strength E

Propagation Loss Lp

RmVdBE 10log)/( βγμ +=

)(&)(bydeterminedconstans:,

MHzfmh cb

βγ

RBAdBLp 10log)( +=2

10178 10log ( / 4 )( )m

Aa h

B

λ πγβ

= −− −

= −

)(heightantennastationvehicularthe

forfactorcorrectionthe:)(

mh

ha

m

m

Page 5: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 5

Introduction of the Empirical Formula

A : Value of the Propagation Loss at R = 1 (km)

121.0114.5106.094.5200

123.0116.5108.096.5150

125.0118.0110.098.5100

127.0120.5112.0101.070

129.5122.5114.0103.050

132.0124.5117.0105.530

1500900450150hb (m)

fc (MHz)

c

mb

fhahA

10

10

log16.2655.69)(log82.13

+=−−=

αα

Page 6: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 6

Introduction of the Empirical Formula (Cont’d)

B : Slope of the Propagation Loss Curve

29.929.929.429.9200

30.931.130.430.4150

32.232.531.331.5100

33.432.232.533.270

34.133.834.133.450

35.735.735.035.030

1500900450150hb (m)

fc (MHz)

bhB 10log55.69.44 −=

Page 7: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 7

Empirical Formula for Propagation Loss

Frequency (fc) : 150 ~ 1500 MHzBase station antenna height (hb): 30 ~ 200 mDistance (R) : 1 ~ 20 kma(hm) : correction factor for the vehicular station antenna height hm(m)

Correction factorsa(hm) : Correction factors in a meium-small or large cityKr : Corrections for SuburbanQr : Corrections for Open areas

Rhhahf

RBAdBL

bm

bc

p

1010

1010

10

log)log55.69.44()(log82.13log16.2655.69

log)(

−+−−+=

+=

Page 8: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 8

Correction factors in a medium-small city (1/2)

Correction curves shown by straight lines with hm in linear scale

The reference hm of Lp : 1.5m ⇒ a1.5 = 0 dB at hm = 1.5 m

For a median-small city

)()(5.1 cmc fhfa ηξ −⋅=

7.0)(log1.1)( 10 −⋅= cc ffξ

8.0)(log56.1)( 10 −⋅= cc ffη

Page 9: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 9

Correction factors in a medium-small city (2/2)

Error to the linear approximation ∝ fc

The maximum error ; fc = 1500 MHz , hm = 4 ~ 5 m

8.0)(log56.1)7.0)(log1.1()( 1010 −⋅−⋅−⋅= cmcm fhfha

MHzfmh cm 1500~150:,10~1:

Page 10: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 10

Correction factors in a large city (1/2)

Large city : the building height average ≥ 15 mCurves can be considered as parabolas

,

)(96.3)54.1log(29.8' 2

103

dBha m

−⋅=

)(63.7)75.11log(2.3' 2

103

dBha m

−⋅=

MHzfc 200≤

MHzfc 400≥

Page 11: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 11

Correction factors in a large city (2/2)

Maximum error ; About 1 dB

fc ≤ 200 MHz and hm ≥ 5 m

)(10.1)54.1log(29.8)( 2

10

dBhha mm

−⋅=

)(97.4)75.11log(2.3)( 2

10

dBhha mm

−⋅=

MHzfc 200≤

MHzfc 400≥

Page 12: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 12

Estimation of the Approximation Error (1/2)

The error for each frequency very small(1-20 km)Maximum error : 1 dBIndependent of the distance

Only term A depends on freq.

Solid lines : Values from the formulaDashed lines : Values from the prediction curves

c

mb

fhahA

10

10

log16.2655.69)(log82.13

+=−−=

αα

Page 13: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 13

Estimation of the Approximation Error (2/2)

The error for each hb

Maximum value : 1 dB

Due to the linear approximation of B

Solid lines : Values from the formulaDashed lines : Values from the prediction curves

bhB 10log55.69.44 −=

Page 14: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 14

Corrections for Suburban

The suburban correctionfactor Kr (dB)

The propagation loss insuburban area Lps (dB)

{ }4.5

)28/(log2)( 210

+= cr fdBK

rpps KurbanInLdBL −= )()(

Page 15: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 15

Corrections for Open areas

The open area correction factor Qr (dB)

The propagation loss inopen area Lpo (dB)

94.40log33.18

)log(78.4)(

10

210

+−

=

c

cr

ffdBQ

rppo QurbanInLdBL −= )()(

Page 16: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 16

Semi-deterministic and empirical models for urban areas ( COST 231-Hata model )

COST 231 – Hata ModelExtension of Hata’s model to the freq. band 1500 ≤ fc (MHz) ≤ 2000

Lb: Basic Transmission Loss

where

restriction :

[ ] mb

mbcb

Ckmdmh

hamhMHzfdBL

+⋅⋅−+

−⋅−⋅+=

)(log)(log55.69.44

)()(log82.13)(log9.333.46)(

⎪⎪

⎪⎪

=

=

=

=

)(20~1

)(10~1

)(200~30

)(2000~1500

kmd

mh

mh

MHzf

m

b

c

⎪⎩

⎪⎨

⎧=

dB

dBCm

3

0 for medium sized city and suburbancenters with medium tree density

for metropolitan centers

Page 17: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 17

COST 231-Walfisch-Ikegami model (COST231-WI model) (1/4)

A combination of the Walfisch and Ikegami modelsImproved path-loss estimation

Consider more data : hr (heights of buildings)w (widths of roads), b (building separation)ϕ (road orientation w.r.t. the direct radio path)

Distinguish LOS and non-LOS situations

hb r

b

lw

dBase station Mobile

α

hm

hr

Δhm

Δhb

Page 18: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 18

COST231-WI model (2/4)

LOS case ( a simple propagation loss formula )for d ≥ 20 m

To determine first constant, using free space loss for d = 20 m

Non-LOS caseComposed of three terms

L0 ; free space lossLmsd ; multiple diffraction lossLrts ; rooftop-to-street diffraction and scatter loss

)(log20)(log266.42)( MHzfkmddBL cb ⋅+⋅+=

⎩⎨⎧

≤+>+++

=00

0

0

msdrts

msdrtsmsdrtsb LLforL

LLforLLLL

)(log20)(log204.32)(0 MHzfkmddBL c⋅+⋅+=

Page 19: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 19

COST231-WI model (3/4)

Lrts is mainly based on Ikegami’s model

where

Lmsd is based on Walfisch and Bertoni model

Lbsh ; Path loss due to Δ hb > 0

Orim

crts

Lmh

MHzfmwdBL

+Δ⋅+

⋅+⋅−−=

)(log20

)(log10)(log102.8)(

[ ][ ]⎪

⎪⎩

⎪⎪⎨

≤≤−⋅−

<≤−⋅+

<≤⋅+−

=

905555)deg(114.00.4

553535)deg(075.05.2

350)deg(354.010

ϕϕ

ϕϕ

ϕϕ

for

for

for

LOri

)(log9)(log)(log)( mbMHzfkkmdkkLdBL cfdabshmsd ⋅−⋅+⋅++=

( )⎪⎩

⎪⎨⎧

≥Δ+⋅−=

rb

rbbbsh

hh

hhmhL

,0

,)(1log18 10

Page 20: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 20

COST231-WI model (4/4)

ka; the increase of the path loss for Δ hb < 0

kd, kf ; the multi-screen diffraction loss vs. distance and frequency

Default values

hr = 3 × ( # of floors) + roof-height , roof-height =

b = 20 ~ 50 m, w = b / 2, ϕ = 90°

Restrictionsfc : 800 ~ 2000 MHz, hb: 4 ~ 50 m, hm: 1~3 m, d: 0.02 ~ 5 km

⎪⎩

⎪⎨

≤Δ⋅−

>

=rb

r

b

rb

d hhmhmh

hhk

,)(

)(1518

,18 [ ]

[ ]⎪⎪⎩

⎪⎪⎨

−⋅

−⋅

+−=

1925/)(5.1

1925/)(7.0

4

MHzf

MHzf

k

c

c

f

, medium sized city and suburban centers

, metropolitan centers

⎪⎪⎩

⎪⎪⎨

≤<⋅Δ⋅−

≤≥Δ⋅−

>

=

rbb

rbb

rb

a

hhandkmdkmdh

hhandkmdh

hh

k

5.0,)(6.154

5.0,8.054

,54

⎩⎨⎧

flat;)(0

pitched;)(3

m

m

Page 21: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 21

Multiple screen diffraction (1/5)

Relatively uniform height buildings modeled as absorbing half-screensA process of multiple diffraction past rows of buildingsAssumptions

Propagation perpendicular to the rows of buildingsMagnetic field polarized parallel to the ground (vertically polarized)Consider the problem of plane-wave diffraction past a semi-infinitesequence of rows labeled n = 0, 1, 2, ⋅ ⋅ ⋅

b x

α

hr

hb

hm

d

Page 22: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 22

Multiple screen diffraction (2/5)Elevated antennas

For elevated antennas

Numerical resultsHn(y = 0) for elevated antennas settles to a nearly constant value for n large enough

Excess path loss due to multiple screen diffraction, Le

Le = -10 log (Q2)Q depends on BS antenna heightH & row spacing d through the dimensionless parameter n=0 1 2 3 N-1 N

b

x

y

Nbtanαα

∫∞ −

+ +=0

4/

1 ')coscos()'(2

)( dyr

eyHeyHjkr

n

j

n αδλ

π

rbyybr /cos,)'(where 22 =−+= δ

Page 23: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 23

Multiple screen diffraction (3/5)Elevated antennas

The dimensionless parameter gp

Over the range of 0.01 < gp < 0.4

Ex) for 900 MHz, typical row spacing of b = 40 m, and hb – hr= 10 m⇒ Range of gp correspond to 0.3 km < d < 11 km

In order to apply the theory for smaller values of d

Over the range of 0.01 < gp < 1 ⇒ 0.11 km < d < 11 km (900 MHz)

λα bgp = d

hhd

hh rbrb −≈

−= −1tanwhereα

9.035.2)( pp ggQ =

32 962.0327.3502.3)( pppp ggggQ +−=

Page 24: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 24

Multiple screen diffraction (4/5)Low antennas

Le for low antennasThe factor QN giving the reduction of the field at the top of last screen due to screens

QN depends on the source height y0 above or below the rooftops

and the row separation b

[ ]∑∞

=

+=0

,2!

11q

qNq

cN Ijgq

NQ π rbc hhyb

yg −== 00 ,1whereλ

1, 1

, , 2 1/ 21

( 1) 12( 1) ( )2 ( 1)

NN q

N q N qn

IN qI IN N nNπ

−−

−=

−= +

+ −+∑

)conditioninitial()1(

14

1,)1(

1

02/32/31,2/30, ∑

= −+=

+=

N

nNN nNn

IN

Page 25: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 25

Multiple screen diffraction (5/5)Examples

Field after multiple diffraction over absorbing screens

For antennas above the rooftops (y0 > 0)A rate of decrease for field is less than 1/N, but approaches 1/N

For antennas below the rooftops (y0 < 0)The field initially decreases more rapidly than 1/N, but quicklyapproaches the 1/N variation

fc = 900 MHz and b = 50 m fc = 1800 MHz and b = 50 mN N

NQ NQ

Page 26: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 26

ITU-R P. 1411 model

Estimating path loss for short-range(less than 1km) outdoor radio systems

Propagation affected primarily by buildings and trees

Classified into 3 categories according to propagation situation ,rooftops-NLOS(1), street canyons-NLOS(2), LOS(3)

Rooftops-NLOS model is similar to COST231-WI model

BS1

BS2

MS1

MS2

MS3

MS4

(1)

(2)(3) (3)

Page 27: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 27

Rooftops NLOS model (P. 1411)

The formula is same as the COST231-WI modelExtension of COST231-WI model to the freq. band fc (MHz) ≤ 5000for Δhb > hr (ITU-R P.1411-3, March, 2005)

ka = 71.4, kf = – 8 for Δhb > hr and fc > 2000 MHz

AssumptionThe roof-top heights differ only by an amount less than the 1st Fresnel-zone radius over a path of length l, hr = the average roof-top heightThe roof-top heights vary by much more than the 1st Fresnel-zone radius: a preferred method of knife-edge diffraction calculation due tothe the highest buildings along the path is recommended to replace themulti-screen modelWhere l : distance over which the buildings extend

Page 28: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 28

Lmsd has two formulas according to Δhb and incidence angleA criterion for grazing incidence : settled field distance ds

When l > ds, Lmsd has same formula as COST231-WI modelWhere l : distance over which the buildings extend

When l < ds

rbbb

s hhhhdd −=Δ

Δ

⋅= where2

)(log10 210 Nmsd QL ⋅−=

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

<⎟⎟⎠

⎞⎜⎜⎝

⎛+

>⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ⋅

=

rb

rb

rbb

N

hhford

b

hhfordb

hhforbdh

Q

,2

112

,

,35.29.0

θπθρλ

π

λ

( )22

arctan

bh

bh

b

b

+Δ=

Δ=

ρ

θ

Rooftops NLOS model (P. 1411)

Page 29: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 29

Street canyons NLOS model (P. 1411)

Situations where both antennas are below roof-top level

Lr : reflection path loss

Ld : diffraction path loss

BS

MSx1

x2

w1

w2

α

( )10/10/10 1010log10)( dr LL

SC dBL −− +⋅−=

⎟⎠⎞

⎜⎝⎛+++=

λπα 4log20)()(log20)( 10

21122110 ww

fxxxxdBLr

παα

α <<≈= )()34(6.086.3)( 5.3 radwheref

[ ]

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛ −−

++=

λπ

πα 4log20180901.0

2)(log10)(

10

211210 ad DxxxxdBL

⎥⎥⎦

⎢⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

2arctanarctan

240

1

1

2

2 ππ w

xwxDa

Page 30: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 30

LOS situations within street canyons (P. 1411)

Basic transmission loss can be characterized by two slopes and a single breakpointAn approximate lower bound

An approximate upper bound

⎪⎩

⎪⎨⎧

>

≤+=

bpbp

bpbp

bpRdforRd

RdforRdLL

lLOS )/(log40

)/(log20

10

10

,

⎪⎩

⎪⎨⎧

>

≤++=

bpbp

bpbp

bpRdforRd

RdforRdLL

uLOS )/(log40

)/(log2520

10

10

,

pointbreaktheatlossontransmissibasicthe:8

log20where2

10 ⎟⎟⎠

⎞⎜⎜⎝

⎛=

mbbp hh

Lπλ

distancebreakpointthe:4

whereλ

mbbp

hhR

⋅≈

Page 31: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 31

ITU-R P. 1546 model (1/4)

Point-to-area predictions for terrestrial servicesFrequency range : 30 MHz to 3000 MHzThe distance range : 1 km to 1000 km

The propagation curves at nominal frequencies of 100, 600 and 2000 MHz as a function of various parameters used

Curves are based on measurement dataRepresent the field-strength values for 1 kW e.r.p. exceeded for 50%, 10% and 1 % of time

Interpolation and extrapolation for nominal values such as frequency, distance, percentage time, base antenna height and mixed land sea path are used

Page 32: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 32

ITU-R P. 1546 model (2/4)

Interpolation / ExtrapolationFor frequency, distance and BS antenna height

Einf, Esup: Field strength value for lower/higher nominal value

hb, d, f: required value for prediction

hinf, dinf, finf / hsup, dsup, fsup: lower/higher nominal value

For percentage time

Qt = Qi(t/100), t: percentage time

Qi(x): inverse complementary cumulative normal distribution function

),,/,,log(),,/,,log(

)(infinfinfsupsupsup

infinfinfinfsupinf fdhfdh

fdhfdhEEEE b−+=

)/()()/()( supinfsupinfsupinfinfsup QQQQEQQQQEE tt −−+−−=

Page 33: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 33

ITU-R P. 1546 model (3/4)

Mixed pathsStep1. The total length of path that lies over land dl

Step 2. The quantity Δ

Step 3. The mixed path value at the MS antenna distance, dtotal

Step 4. The difference between mixed-path and land path field strength

Step 5. An interpolation factor

Step 6. The field strength for the mixed path

[ ]⎩⎨⎧

<−=Δ

otherwisedEdEkmdforkmEkmEd

lsealland

lsealandl

,)()(1,)1()1(

Δ+= )()( totalseatotalmix dEdE

)()( totallandtotalmix dEdEE −=Δ

)]([exp)1( 0003527.042.2 BShld −⋅−−+= βααχ

χ⋅Δ+= EdEE totalland )(

0001.0,3.0 == βα

Page 34: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 34

ITU-R P. 1546 model (4/4)

CorrectionsMS antenna height

Effective terrain clearance angle θeff from BS antenna

Terrain clearance angle θ from MS antenna

Location variabilityEquivalent basic transmission loss

Lb = 139 – E + 20log fc

Page 35: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 35

Impulse response in a Multipath Environment

Received Voltage:an=amplitude of nth ray

τn=Ln/c=Travel time of the nth ray

For non-overlapping impulses

( ) ( )∑ −=n

nn tatV τδ

( ) ( ) ( ) ( ) ( )

powersrayofsum

222

=

−=−−== ∑∑∑n

nnn m

mnmn tattaatVtP τδτδτδ

Page 36: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 36

Finite Width Pulse Response in Multipath

Received voltage:

For partially overlapping pulses

( ) ( )∑ −−=n

jjwtjkLnn

nn eeetpatV φτ

( ) ( ) ( ) ( ) ( )mn LLjk

n mmnmn etptpaatVtP −−∑∑ −−== ττ*2

Page 37: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 37

Tapped Delay Line ModelThe discrete time frequency-selective fading channel model

Tapped delay line (TDL) with spacing ts and time varyingcoefficients g(t)

ts: Poisson arrival distribution

g(t): Rician or Rayleigh distribution

ts ts tss(t)

g0(t) g1(t) g2(t) gL-1(t) gL(t)

y(t)

Page 38: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 38

Saleh & Valenzuela ModelChannel model

{θkl}: statistically independent uniform r.v. over [0, 2π){β 2

kl}: monotonically decreasing functions of {Tl} and {tl}The first rays of the clusters & subsequent rays

Poisson arrival distribution ( rate Λ, γ )

tT0 T1 Tl

)(2 tβ

Γ− /Teγ/te−

tT0 T1 Tl

00β

10β 01βl0β

)()(0 0

klljθ

l kkl τTtδeβth kl −−= ∑ ∑

=

=

0 )],(exp[)|()](exp[Λ)( )1()1(kl11 >−−=−−= −−−− l, k, pTTΛ|TTp lkkllkllll ττλλττ

Page 39: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 39

ETSI Channel Model

Classify test environment into 3 casesSeparate Channel w.r.t RMS delay spread

55400040370Vehicular(High Antenna)

557504045Outdoor to Indoor andPedestrian

451005035Indoor Office

P(B) (%)RMS delay ofChannel B (nsec)P(A) (%)RMS delay of

Channel A (nsec)Test Environment

Page 40: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 40

FLAT-25.2700-32.03106

FLAT-18.0500-26.02905

FLAT-10.8300-18.01704

FLAT-7.2200-10.01103

FLAT-3.6100-3.0502

FLAT00001

Avg. Power (dB)Rel. Delay (nsec)Avg. Power

(dB)Rel. Delay (nsec)Doppler

Spectrum

Channel BChannel ATap

Examples ( ETSI Model ) Indoor office case

Channel A Channel B

0 Relative Delay (nsec)500 10000 Relative Delay (nsec)500 1000

Page 41: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 41

JTC Channel Model

Classify test environment into 9 casesSeparate Channel w.r.t RMS delay spread

Residential

Urban/Suburban Low-Rise

Urban High-Rise

Vehicular

Residential

Urban/Suburban Low-Rise

Urban High-Rise

Pedestrian

Outdoor

Commercial

Office

Residential

Indoor

Page 42: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 42

Examples ( JTC Model )Indoor Office Case

Avg. PowerRel. Delay

2400

1100

700

500

200

0

Channel C

-16.3

-1.0

-4.8

-2.4

-1.4

0

FLAT-25.27006

FLAT-18.05005

FLAT-10.83004

FLAT-7.22003

FLAT-3.6100-8.51002

FLAT00001

Avg. PowerRel. DelayAvg. PowerRel. DelayDoppler

Spectrum

Channel BChannel ATap

0 Relative Delay (nsec)500 0 Relative Delay (nsec)500 1000 15000 Relative Delay (nsec)500

Channel A Channel B Channel C

Page 43: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 43

IEEE-802.11 WLANs TGn channel model

Five delay profile models proposed for different indoor environmentsInclude spatial information for channel model

6

4

3

2

2

1 tap

# of clusters

503 / – ∞LOS/NLOSD Residential homes and small offices

150 / – ∞LOS/NLOSB

300 / – ∞LOS/NLOSC

1506 / – ∞LOS/NLOSF

1006 / – ∞LOS/NLOSE

Optional, 1 tap at 0 ns delay model

00 / – ∞LOS/NLOSA

EnvironmentsRMS delay

(ns)(NLOS)

K (dB)LOS/NLOS

ConditionModel

Page 44: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 44

Examples (WLANs TGn channel model B)

25.425.425.425.425.425.425.4AS (°)AS(Tx)

106.5106.5106.5106.5106.5106.5106.5AoD (°)AoD

25.225.225.225.225.225.225.2AS (°)AS(Rx)

118.4118.4118.4118.4118.4118.4118.4AoA (°)AoA

- 21.8- 18.7- 15.6- 12.5- 9.4- 6.3- 3.2Power (dB)Cluster 2

14.414.414.414.414.4AS (°)AS(Tx)

225.1225.1225.1225.1225.1AoD (°)AoD

14.414.414.414.414.4AS (°)AS(Rx)

4343434343AoA (°)AoA

-21.7-16.2-10.8- 5.40Power (dB)Cluster 1

80706050403020100Excess delay (ns)

987654321Tap index

Page 45: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 45

• Moving Focus : from Propagation Channel to Radio Channel- Spatial description of channel attributes (DoA, DoT, AS, DS, per-path PDP, etc)- Inclusion of the antenna pattern- Time-dependent trajectory of the MS

CODER MODEMIF/RF

STAGESCODERMODEM

IF/RFSTAGES

RADIO CHANNEL

PROPAGATION CHANNEL

DIGITAL CHANNEL

MODULATIONCHANNEL

TRANSMITTER RECEIVER

@Mobile Radio Comm by Raymond

Spatial Channel Model (SCM) (1/2)

Page 46: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 46

Example of spatial channel information• Real Measurement Data : Angle vs Delay vs Power -

Spatial Channel Model (SCM) (2/2)

Page 47: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 47

• Link Level Spatial Channel Parameters (Base Station and Terminal Specific)

- Mean Angle of Arrival- Rms Angle Spread- Power Azimuth Spectrum- Behavior per Resolvable Path- Ricean and Rayleigh Fading

• System Level Spatial Channel Parameters (System Wide Parameters)

- BS, MS Positions- AOA, AS, PAS for each terminal- Random MS Orientation- Mixture of Channel Models- Explicit Spatial Interference Modeling- Per-path spatial parameters

Link level vs System level SCM

Page 48: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 48

Link Level SCM assumptions (1/3): parameters• Only one snapshot of the channel behavior• Not used to compare performance of different algorithms.• Only for calibration : comparison of performance results from different implementations

of a given algorithm.

Page 49: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 49

Link Level SCM assumptions (2/3): parameters

Page 50: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 50

3 Sector Antenna Pattern

-25

-20

-15

-10

-5

0

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

Azimuth in Degrees

Gai

n in

dB

.

( )2

3

min 12 , where 180 180mdB

A A⎡ ⎤⎛ ⎞θ

θ = − − ≤ θ ≤⎢ ⎥⎜ ⎟θ⎢ ⎥⎝ ⎠⎣ ⎦

Antenna Boresight in direction of arrow

3-Sector Scenario

BS

• Am is max attenuation 20 dB for 3 sector, 23dB for 6 sector• θ3dB is 70° for 3 sector, 35° for 6 sector

Link Level SCM assumptions (3/3)BS antnena parameters

Page 51: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 51

• Am is max attenuation 20 dB for 3 sector, 23dB for 6 sector• θ3dB is 70° for 3 sector, 35° for 6 sector

Link Level SCM Reference Values for calibration

Page 52: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 52

Assumptions• Multiple cells environments : BSs & MSs• Performance metrics (throughput, delay etc) are collected over D drops• Quasi-static channel for each drop

- the channel undergoes fast fading - the locations of the MSs are fixed for each drop.

Final Goal• For an S element BS array and a U element MS array,

obtain the channel coefficients for one of N multipath components

)(tnH S -by- U matrix of complex amplitudes

at nth path

( )[ ]( )

( ) tθjkkdjG

jkdG

MP

th vAoAnmM

mmnAoAmnuAoAmnMS

AoDmnsAoDmnBSnnus )cos(exp

)sin(exp)(

)sin(exp)()( ,,1

,,,,,

,,,,,, θ−⋅

⎟⎟⎟

⎜⎜⎜

Φ+θθ

×θθ= ∑ =

v

General description for System level SCM (1/3)

Page 53: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 53

Procedure for generating the channel matrix

• Specify an environment : urban/suburban macro, or urban micro• Obtain the parameters to be used in simulations• Generate the channel coefficients

Suburban Macro Options: None

Urban Macro Options: Urban canyon Far scattering cluster Line of sight

Urban Micro Options: Urban canyon Far scattering cluster Line of sight

Pathloss model: (Hata) Pathloss model: (Walfish-Ikegami)

Generate coefficients

)(tnH

General description for System level SCM (2/3)

Page 54: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 54

Ray-based Scattering Model• N time-delayed multipath (N = 6 or 3)

• M subpaths per multipath (M = 20)

BSθ

AoDn ,δ

, ,n m AoDΔ

AoDmn ,,θ

BSΩ

N

NCluster n

AoAmn ,,θ

, ,n m AoAΔ

,n AoAδ

MSΩ

MSθ

θv

BS array broadside

MS array broadside

BS array

MS directionof travel

MS array

Subpath m

v

General description for System level SCM (3/3)

Page 55: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 55

• Macrocell ; BS to BS 3 km with antennas above rooftop • Microcell ; BS to BS 1 km with antennas at rooftop height

( )10 ^ , ~ (0,1)AS AS ASx xσ = ε + μ η

Scenario Parameters (1/2)

Page 56: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 56

Path Loss Model• Macrocell : Modified Hata Model• Microcell : Walfisch-Ikegami Model

Scenario Parameters (2/2)

Page 57: Wireless Channel #8 (hata, cost, itu)ocw.snu.ac.kr/sites/default/files/NOTE/1036.pdfWireless Channel Modeling 7 Empirical Formula for Propagation Loss ¾)Frequency (f c) : 150 ~ 1500

Wireless Channel Modeling 57

• Angle of Departure (AoD) for N multipath

Wish to generate RVs : δn,AoD corresponding to nth multipath• δn’ ~ η(0,σ2AoD) , σAoD = rAS * σAS

• Proportional factor rAS = angle occurrence (σAoD) / power weighted angular spread(σAS)

@3GPP TSGR1#25 (02) 0613

• Obtain δn,AoD as increasing order : δ1,AoD < … < δn,AoD

AoD for N multipath