William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

33
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April 19, 2004 The Onset of Magnetic Reconnection

description

The Onset of Magnetic Reconnection. William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April 19, 2004. www-spof.gsfc.nasa.gov. Motivation for this work. - PowerPoint PPT Presentation

Transcript of William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Page 1: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

William Daughton

Plasma Physics Group, X-1

Los Alamos National Laboratory

Presented at:

Second Workshop on Thin Current Sheets

University of Maryland

April 19, 2004

The Onset of Magnetic Reconnection

Page 2: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Motivation for this work Current sheet geometry is often employed to study the

basic physics of collisionless magnetic reconnection

Kinetic Simulations are typically 2D with large initial perturbation:

a. Does not allow instabilities in direction of currentb. Avoids the question of onset completely

www-spof.gsfc.nasa.govwww-spof.gsfc.nasa.gov

rB

rJ Courtesy of Hantao Ji (PPPL)

Page 3: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Basic Approach

cost ∝mi

me

⎝ ⎜

⎠ ⎟

1+n / 2

n → dimensionsFor a given problem with fixed box size

Explicit PIC must resolve all relevant scales

cΔt < Δx ωpeΔt <1 ΩceΔt <1 Δx ≈ λ D

3D Simulations - Must choose very artificial parameters

2D Simulations - More realistic parameters are possible

mi

me

,ωpe

Ωce

, etc

Bx

z

Jy

x

y

z − x plane → Tearing →γ

Ωci

~ 0.05

z − y plane → LHDI →γ

Ωci

~ 5

Page 4: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Harris Current Sheet

fs =n(z)

π 3 / 2V||sV⊥s2

exp −vx

2

V||s2

−vy −Us( )

2+ vz

2

V⊥s2

⎢ ⎢

⎥ ⎥

MainDistribution

fbs =nb

π 3 / 2v th3

exp −vx

2 + vy2 + vz

2

Vbs2

⎣ ⎢ ⎢

⎦ ⎥ ⎥

BackgroundDistribution

n(z) = no sech2 z

L

⎝ ⎜

⎠ ⎟

V||s =2T||s

m s

V⊥s =2T⊥s

m s

Us =2cT⊥s

qsBoL

Anisotropy

T⊥s

T ||s

Thickness

ρi

L=

U i

V⊥s

Bx (z) = Bxo tanh(z /L)

Jy (z) =cBo

4π Lsech2 z

L

⎝ ⎜

⎠ ⎟

x€

z

Page 5: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:
Page 6: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

2D Simulations of Tearing

Consider 3 simulations - Only change the box length

1. Single island saturation

2. Two island saturation

3. Four island saturation

ρi

L=1

mi

me

=100Ti

Te

=1ωpe

Ωce

= 5Equilibrium Parameters

γΩci

≈ 0.11 kxL ≈ 0.5

Reduced by 30% for

mi

me

=1836

Box Size → 4πL × 4πL 640 × 640 grid 50 ×106 particles

Box Size → 8πL × 4πL 1280 × 640 grid 100 ×106 particles

Box Size →16πL × 4πL 2560 × 640 grid 200 ×106 particles

Page 7: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Single Island Tearing Saturation

γΩci

kxL€

T⊥e

T||e

=1

z

L

x /L

T⊥e /T||e

T⊥e

T||e

= 0.95

Linear Growth Rate Mode Amplitude

tΩci

PIC Simulation

Ay

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 8: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Two Island Coalescence

z

L

x /L

T⊥e /T||e

Mode Amplitudes

Ay

kxL

tΩci

γΩci

Linear Growth Rate

M=1

M=2

T⊥e

T||e

=1

0.95

0.9

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 9: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Four Island Coalescence

z

L €

x /L€

z

L

Onset Stage• Central region of box

• Linear tearing islands

• Coalescence

• Very slow process

Fast Reconnection

• Show entire box

• Large scale reconnection

• Saturation limited by box

tΩci = 0 →190

tΩci =190 → 244

x /L

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 10: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Reconnection Onset from Tearing

How might this change in 3D?• LHDI is much faster than tearing

• 2D simulations in oblique plane

• Can the LHDI modify onset physics ?

• Single island tearing saturates at small amplitude

• Onset requires coalescence of many islands

• Finite Bz is stabilizing influence

1−Te⊥

Te||

⎝ ⎜

⎠ ⎟>

ρ e

LLaval & Pellat 1968Biskamp, Sagdeev, Schindler, 1970

Scholer et al, PoP 2003

Horiuchi

Shinohara & Fujimoto

Pellat, 1991Pritchett, 1994Quest et al, 1996

Sitnov et al, 1998 -> can go unstable?

Tearing is stablein magnetotail

Page 11: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Lower-hybrid Drift Instability (LHDI)• Driven by density gradient

• Fastest growing modes

• Real frequency

• Growth rate

• Stabilized by finite beta

• Primarily electrostatic and localized on edge

kyρ e ~ 1

β =8π n(z)(Te + Ti)

Bx2(z)

ω ≤Ωlh =ωpi

1+ ωpe2 /Ωce

2( )

1/ 2 ≈ ΩciΩce( )1/ 2

γ≤Ωlh

ˆ φ (z) = ˜ φ (z) exp −iωt + iky y[ ]€

z /L

Example Eigenfunction

GoodAgreement

Carter, Ji, Trintchouck, Yamada, Kulsrud, 2002Davidson, Gladd, Wu & Huba, 1977

Huba, Drake and Gladd, 1980Theory Experiment

˜ φ (z)

Bale, Mozer, Phan 2002 Observation

U i < Vthi ⇒ kinetic (dissipative)

U i > Vthi ⇒ fluid - like (reactive)

Page 12: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Established Viewpoint on LHDI

z

y€

˜ φ (z)• Localized on edge of layer

• Small anomalous resistivity

• Wrong region to modify tearing

• Not relevant to reconnection

New results challenge this conclusion

1. Direct penetration of longer wavelength linear modes

ky ρ iρ e ~ 1

ρi

L>1

ρi

L≤12. Nonlinear development of

short wavelength modes

kyρ e ~ 1

Page 13: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Penetration of LHDI

mi

me

=1836ρ i

L= 2

Δx ≈1.4λ D Δt Ωce ≈ 0.08 Box Size =12L ×12L

1280 ×1280 cells 500 ×106 particles

z

L

z

L

z

L

yL

tΩci=3

tΩci=11

tΩci=8

Bx (y,z) − Bxo tanh(z /L)

yL

kyL = 2.62 ⇒ ky ρ iρ e ≈ 0.8

tΩci=13

tΩci=13

Bx€

Jy€

z

L

z

L

Page 14: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:
Page 15: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

2D Simulation of Lower-Hybrid

ρi

L=1

mi

me

= 512Ti

Te

= 5ωpe

Ωce

= 4nb

no

= 0.02Tb

Te

=1Equilibrium Parameters

Box Size →12L ×12L 2560 × 2560 grid 1.6 ×109 particles

ΔtΩce = 0.08 Δz = Δy ≈ λ D 256 processors

Simulation Parameters:

Thicker Sheet Colder Electrons

More relevant to magnetospheric plasmas

Background

Page 16: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Electrostatic Fluctuations

ωr /Ω lh = 0.54 γ /Ωci =1.93

z /L

˜ φ (z)

ωr /Ω lh = 0.57 γ /Ωci = 2.26

˜ φ (z)

z /L

Two fastest Growing modes

kyρ e ≈ 0.75

z

L

y /L

Lower-Hybrid Drift Mode

Lower-Hybrid Drift Mode

Fluctuations are confined to the edge of the sheet

˜ φ (z)

Ey (y,z)

Page 17: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Evolution of Current Density

z

L

y /L

Jy

Jo

Jy (z) = Jo sech2(z /L)Initial

Y-averaged

z

L

Jy = −eneVey + eniViy

Contours of

Jy (z,y)

Jy =1

Ly

Jy∫ (z,y) dy

Page 18: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

z

L

y /L

ni(z) = no sech2(z /L)Initial

Y-averaged

z

L

Contours of

ni(z,y)

ni =1

Ly

ni∫ (z,y) dy

Evolution of Ion Density

ni

no

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 19: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

z

L

y /L

Initial

Y-averaged

z

L

Contours of

Viy (z,y)

Viy =1

Ly

Viy∫ (z, y) dy

Viy

Vthi

Evolution of Ion Velocity

Viy (z) =U i

1+ nb cosh2(z /L)

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 20: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

z

L

y /L

Initial

Y-averaged

z

L

Contours of

Vey (z,y)

Vey =1

Ly

Vey∫ (z,y) dy

Vey

Vthe

Evolution of Electron Velocity

Vey (z) =Ue

1+ nb cosh2(z /L)

Page 21: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

z

L

y /L

Y-averaged

z

L

Contours of

Evolution of Electron Anisotropy

T⊥e

T ||e

T⊥e

T ||e

T⊥e

T ||e

Page 22: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Resonant Scattering of Crossing Ions

z

y

Bx (z) = Bo tanhz

L

⎝ ⎜

⎠ ⎟

δi ≈ 2ρ iL

Scale forCrossing Orbit

vy

vz

U i

ωky

≈U i

2

Noncrossing

Crossing

Crossing Example of scattering

Lower-hybrid fluctuations

˜ φ (z)

zlh

Page 23: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

z

L

y /L€

z

L

Contours of

φ(z, y)

Electrostatic Potential

−e φTe

Net gain + + + + + + + + +

Net gain + + + + + + + +

Net loss - - - - - - - - -

Page 24: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Electron Acceleration

mene

dVe

dt= −∇ • Pe − ene E+

Ve ×B

c

⎝ ⎜

⎠ ⎟

Neglect

Vey =c

eBxne

∂Pe

∂x−

c

Bx

∂φ

∂z

Use EquilibriumProfiles

z

L

y /L€

z

L

Vey /Vthe

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 25: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Inductive Heating of ElectronsEvolution of current profile modifies magnetic field

Jy

Bx

For electrons, magnetic field changes slowly

Changes on the ion time scale

pdq∫

μ =mv⊥

2

2B

z

y

δe ≈ 2ρ eL

p = mv⊥r

dq = dθ

T⊥e (t)

T⊥e0

≈Bx (t)

Bx 0

How to construct adiabatic invariant for these orbits?

Magnetic Moment

Inductive Heating

Adiabatic Invariant

x

Λ(x)

Page 26: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Anisotropic Electron Heating

z

L

y /L

T⊥eT⊥e 0

T⊥e

T⊥e 0Contours of Y-averaged

T⊥e (t)

T⊥e 0

Y-averaged

Bx (t)

Bx 0

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 27: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Physical Mass

mi

me

=1836

5120 × 5120 grid

6 ×109 particles

Plasma parameters are same butnumerical requirements increase

tΩci = 7

Results show same basic physics

Details are described in preprint

How big of a mass ratio is needed?

Page 28: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

What about lower mass ratio?

z

L

y /L

Jy

z

L

mi

me

= 512

mi

me

=100

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 29: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

1. Critical thickness for process to occur

2. Potential structure accelerates electrons

3. Enhances tearing mode

New Model for Fast Onset of Reconnection

zlh ≈ (1− 2)L

δi ≈ 2ρ iL

ρi

L≈ 0.5

Lower-hybrid drift instability

Lower-hybrid drift instability

1. Current density2. Anisotropy

kxL€

γΩci

= 0.035

γΩci

T⊥e

T||e

=1

T⊥e

T||e

=1.1

γΩci

= 2.2

4. Rapid onset of reconnection

Critical Scale

Tearing Growth RateForslund, 1968

J. Chen and Palmadesso, 1984

Page 30: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Test this idea at reduced mass ratio

γΩci

kxL€

T⊥e

T||e

=1

Tearing Growth Rate

T⊥e

T||e

=1.5

z

L

z

L

x /L

Factor of 17 increase in growth rate

Fastest mode shifts to shorter wavelength

Growth of small islands --> Coalescence

Rapid onset of large scale reconnection

Initialize previous 2-Mode case with

T⊥e

T||e

=1.5

mi

me

=100

Page 31: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Electron Anisotropy Instabilities?Theory of Space Plasma Microinstabilities, S.P Gary

T⊥e

T||e

<1 Ωci < ω << Ωce

kc

ωpi

>1 k × Bo = 0€

T⊥e

T||e

>1 Ωci < ω < Ωce

kc

ωpe

≤1 k × Bo = 0

1. Whistler Anisotropy Instability

2. Electron Firehose Instability

1. Edge region is low beta2. Center has complicated orbits3. Does not appear in simulations?

Should these occur in neutral sheet?

Page 32: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Neutralization of Electrostatic Potential

γ>>Vthe

D

γDVthe

Ωci

⎝ ⎜

⎠ ⎟Vthi

Vthe

⎝ ⎜

⎠ ⎟ΩciL

Vthi

⎝ ⎜

⎠ ⎟D

L

⎝ ⎜

⎠ ⎟>>1

1

20

1

5

D >> 4L

D

Growth of LHDI

Time scale for electrons to flow in and neutralize

Page 33: William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at:

Future Work

Working with collaborators to simulate in 3D

However, many things left to examine in 2D:

1. Does predicted critical thickness hold?

2. Role of guide field and/or normal component

3. Influence of background (lobe) plasma

4. More realistic boundary conditions

Possible relevance to recent Cluster observations Runov et al, Cluster observation of a bifurcated current sheet, GRL, 2003