Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

143
Well Testing

Transcript of Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

Page 1: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

Well Testing

Page 2: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

2

Page 3: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

3

flow D-one (6)

small are and gradients pressure (5)

constant is (4)

)(isotropicdirection allin same theandconstant is (3)

pressure oft independen is (2)

ilitycompressibconstant and small has flowing liquid phase-single The (1)

assuch s,assumptionimportant severalon based derived is

Eq.(A.9), equation,y Diffusivit

c

k

Page 4: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

4

ydiffusivit hydraulic The10634.2

equationy diffusivit thecalled isequation This

)1.1(10634.2

1

10634.2

11

10634.2

1

4

42

2

4

4

c

k

t

p

k

c

r

p

rr

p

t

p

k

c

r

r

r

p

rr

p

rr

r

t

p

k

c

r

pr

rr

hrfthrtmdk

psipsivolvolpsivolvolccp

fractionftrpsip

equationofUnits

/][][][

/1])[/(][//][][

][][][

)1.1(

2

Page 5: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

5

htkcrrqfpt

p

k

c

r

p

rr

p

w ,,,,,,,,10634.2

1

analysis essDimensionl

42

2

Page 6: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

6

Page 7: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

7

Page 8: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

8rateconstqBDRBqBSTBRBBDSTBqNote

qB

ppkhpwhere

t

p

r

p

rr

p

qB

ppkh

tqB

ppkh

rrqB

ppkh

r

rc

ktt

r

rrwhere

t

p

r

p

rr

p

rc

kt

p

r

r

p

r

r

r

r

p

t

p

k

cr

r

p

rr

r

pr

t

p

k

c

r

p

rr

p

iD

D

D

D

D

DD

D

i

D

i

DD

i

D

wD

wD

DDDD

wwww

www

.;/][;/][;/][:

2.141

)(1

2.141

)(

2.141

)(1

2.141

)(

10634.21

10634.2

1

10634.2

1

)1.1(10634.2

1

reservoir) (oil ---- Eq.(1.1) ofequation y diffusivit of form essDimensionl

2

2

2

2

4

2

2

2

42

2

422

2

22

42

2

Page 9: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

9

)5.()(

)()(

state ofEquation From

)5.(10634.2

1

10634.2

1

...

)5.(10634.2

11

assuch Eq.(A.5) From

const.)z(for fluid lecompressibFor

4

4

4

bAz

p

RT

M

zRT

MP

zRTM

mmp

nzRTpV

aAt

p

pkr

pr

rror

tr

pr

r

k

r

constconstconstkfor

Atkr

pkr

rr

Page 10: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

10

)5.(10634.2

1

1

10634.2

11

1

10634.2

1

2

12

2

1

10634.2

1

2

1

10634.22

11

10634.2

1

.1,

10634.2

1

10634.2

1

have weEq.(A.5a), into Eq.(A.5b) ngSubstituti

2

4

2

2

22

2

4

2

2

22

2

4

2

222

4

2

4

2

4

4

4

cAt

p

k

c

r

p

rr

p

gasforp

ct

pc

kr

p

rr

pr

r

t

p

pkr

pr

rr

t

p

pt

p

t

pp

t

p

t

p

pkr

pr

rr

t

p

kr

pr

rr

t

p

p

p

kr

prp

rr

constzorzgasIdeal

t

p

z

p

pkr

p

z

pr

rr

t

p

z

p

RT

M

pkr

p

z

p

RT

Mr

rr

Page 11: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

11

zTq

ppkhpwhere

t

p

r

p

rr

p

zTq

ppkh

tzTq

ppkh

rrzTq

ppkh

r

rc

ktt

r

rrwhere

t

p

r

p

rr

p

rckt

p

rr

p

rr

rr

p

t

p

k

cr

r

p

rr

r

pr

cAt

p

k

c

r

p

rr

p

i

iii

DD

D

D

D

DD

D

DDDD

wD

wD

DDDD

wwww

www

1422

)(1

1422

)(

1422

)(1

1422

)(

10634.21

10634.2

1

10634.2

1

)5.(10634.2

1

Eq(A.5c) ofequation y diffusivit of form essDimensionl

22

2

2

222222

2

2

422

2

22

2

4

22

2

22

2

42

22

2

222

2

4

2

2

22

Page 12: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

12

)5.()(

)()(

state ofEquation From

)5.(10634.2

1

..

)5.(10634.2

11

assuch Eq.(A.5) From

gas ideal-nonFor

4

4

bAz

p

RT

M

zRT

MP

zRTM

mmp

nzRTpV

dAtkr

pr

rr

constconstkFor

Atkr

pkr

rr

Page 13: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

13

rr

p

z

pddp

z

p

dpz

pd

dpz

pDefine

z

p

tkr

p

z

pr

rr

zRT

pM

tkr

p

zRT

pMr

rr

p

po

2

1

2

1

2

2

10634.2

1

10634.2

1

Eq.(A.5d) into Eq.(A.5b) ngSubstituti

4

4

tp

z

t

p

t

p

z

p

t

p

pt

cz

p

z

p

pt

pc

z

p

RT

M

z

p

pRT

M

z

ppcce

t

p

z

p

pz

p

t

gg

g

2

2

11sin

Page 14: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

14

qT

ppkhp

rc

kttwhere

t

p

r

p

rr

p

tk

c

rrr

atk

c

rr

rr

t

c

krr

rr

z

p

tkr

p

z

pr

rr

t

c

tp

zc

z

p

z

p

t

tp

z

t

p

iD

wgD

D

D

D

D

DD

D

g

g

g

gg

1424

1064.2

1

1064.2

1

)2.1(1064.2

1

21064.22

11

1064.2

1

22

2

2

4

2

2

42

2

4

4

4

Page 15: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

15

)5.1(

)4.1(

)3.1(10634.2

1

waterand gas oil, of flow ussimultaneoFor

4

w

w

g

g

o

o

t

fggwwoo

t

t

t

kkk

phasesindividualtheofmobilitiestheofsumthe

ccScScS

ilitycompressibsystemtotalthecwhere

t

pc

r

pr

rr

Page 16: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

16

t

ScScSc

rr

rr

kkk

Summation

t

Sc

rr

rr

k

flowgasFor

t

Sc

rr

rr

k

flowwaterFor

t

Sc

rr

rr

k

flowoilFor

t

c

rr

rr

k

tk

c

rr

rr

ggwwoo

g

g

w

w

o

o

gg

g

g

ww

w

w

oo

o

o

4

4

4

4

4

4

1064.2

1

1064.2

1

1064.2

1

1064.2

1

1064.2

1

1064.2

1

assuch Eq.(1.2a) From

Page 17: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

17

1.3 Solution to Diffusivity Equation

)1.1(10634.2

1

ydiffusivit ofEquation

42

2

t

p

k

c

r

p

rr

p

• There are four solutions to Eq.(1.1) that are particularly useful in well testing:

(1) The solution for a bounded cylindrical reservoir

(2) The solution for an infinite reservoir with a well considered to

be a line source with zero wellbore radius,

(3) The pseudo steady-state solution

(4) The solution that includes wellbore storage for a well in an

infinite reservoir

Page 18: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

18

• The assumptions that were necessary to develop Eq.(1.1)(1) Homogeneous and isotropic porous medium of uniform thickness,(2) Pressure-independent rock and fluid properties,(3) Small pressure gradient,(4) Radial flow(5) Applicability of Darcy’s law ( sometimes called laminar flow )(6) Negligible gravity force.

)1.1(10634.2

1

ydiffusivit ofEquation

42

2

t

p

k

c

r

p

rr

p

Page 19: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

19

DDD

D

D

rD

DD

rr

DDD

i

rr

i

wD

iD

D

D

D

D

DD

D

tallforratp

r

por

r

pr

kh

Bq

kh

Bq

kh

Bq

r

pr

rallfortatp

formessDimensionl

tallforraspp

tforkh

Bq

r

pr

rallfortatpp

conditionsInitialandboundary

rc

ktt

Bq

ppkhp

t

p

r

p

rr

p

t

p

k

c

r

p

rr

p

D

w

w

0)3(

11

2.141

00708.0001127.02)2(

00)1(

)3(

0001127.02

)2(

0)1(

:

10634.2

2.141

)( where

1

10634.2

1

casereservoir Infinite rate,Constant

1

2

4

2

2

42

2

Page 20: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

20

begins. production before , pressure, uniformat isreservoir the(4)

) as that (i.e. area infinitean drains well the(3)

radius, zero has well the(2)

, rateconstant aat produces wella (1)

thatAssume

WellSource-Linewith Reservoir lCylindrica Infinite

i

i

p

rpp

qB

Page 21: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

21

x

nnu

i

wD

wD

iD

D

DiD

D

DiDDD

tii

nn

xxxxxdu

u

exE

trp

r

rr

rc

ktt

Bq

ppkhpwhere

at

rEpor

at

rErtpor

kt

rcE

kh

qBpp

t

p

k

c

r

p

rr

p

!

)1(

!33!225772.0)ln(

and (hours), at time well thefrom (feet) distanceat (psi) pressure is Where

000264.0

2.141

)(

)7.1(42

1

)7.1(42

1,

)7.1(948

6.70

)1.1(10634.2

1

is Eq.(1.1) osolution t the,conditions eUnder thos

32

2

2

2

2

42

2

Page 22: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

22

80907.0ln2

1

5772.04

ln2

1

42

1

0025.05772.0)ln()(

solution Theis or the

solution source-line or the

solution integral-lexponentia thecalled is Eq.(1.7)][or Eq.(1.7a)

2

22

D

DD

D

D

D

DiD

i

r

tp

t

r

t

rEp

xforxxE

)7.1(100

0025.0

2c

r

t

xfor

D

D

Page 23: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

23

Page 24: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

24

Page 25: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

25

)1(1079.3

)7.1(100

)7.1.(

)7.1(80907.0ln2

1

)7.1(42

1

assuch Eq.(1.7a) From

25

2

2

2

Dwt

D

D

D

D

D

DiD

rk

rctor

cr

t

whenusebemaybEq

br

t

at

rEp

Page 26: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

26

)7.1(1688

ln6.70

109289.5ln

6.70

1064.22458.2ln

2

1

)2458.2ln(1064.2

ln2

1

80907.01064.2

ln2

1

2.141

)(

80907.0ln2

1)(

1i.e., , eAt wellbor

80907.0ln2

1

assuch Eq.(1.7b) From

ry.satisfacto is integral lexponentia ery when thsatisfacto is integral

lexponentia theion toapproximat log thepurpose, practicalfor Thus,

5 when 2%about only is Eq.(1.7b) and Eq.(1.7a)between difference But the

2

2

4

2

4

2

4

2

4

2

2

dkt

rc

kh

qB

rc

kt

kh

qBpp

rc

kt

rc

kt

rc

kt

qB

ppkh

ttp

r

r

tp

r

t

wt

wtwi

wt

wt

wt

wi

DDD

D

D

DD

D

D

Page 27: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

27

)7.1(1688

ln6.70

109289.5ln

6.70

assuch Eq.(1.7b) From

2

2

4

dkt

rc

kh

qB

rc

kt

kh

qBpp

rr

t

ti

Page 28: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

28

tkh

qB

k

rc

kh

qBpp

tk

rc

kh

qBpp

tk

rc

kh

qB

dkt

rc

kh

qB

rc

kt

kh

qBpp

wtiw

wtiw

wt

wt

wtwi

ln6.701688

ln6.70

ln1688

ln6.70

ln1688

ln6.70

)7.1(1688

ln6.70

109289.5ln

6.70

2

2

2

2

2

4

Question:Why does pw > pi for certain t ?

Page 29: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

29

equation. flow radial state-steady by the modeled becan

) ( zone thisacross drop pressure additional the), ( radiusouter and

) (ty permeabili uniform of zone alteredan toequivalent considered

is zone stimulatedor damaged theifout that pointed Hawkins

.fracturing hydraulicor n acidizatioby stimulated are sother wellMany

.operations completionor drilling from resulting wellborethe

near (damage)ty permeabili reduced have most wells practice,In

ss

s

pr

k

Page 30: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

30

)1(80907.01064.2

ln1

ln6.70

80907.011064.2

ln2

1

2.141

)(

At (1)

zone) (damaged For

80907.0ln2

1

orenear wellb zone damaged-nonFor

4

2

2

22

4

2

t

s

ssrssi

w

swt

srssis

w

sDs

s

D

DD

c

tk

rhk

qBpp

rrrc

tk

qB

pphk

r

rrorrr

kk

r

tp

)2(80907.01064.2

ln1

ln6.70

80907.01064.2

ln2

1

2.141

)(

1)(At (2)

4

2

2

4

t

s

wswsi

wt

swsis

w

wDw

c

tk

rhk

qBpp

rc

tk

qB

pphk

r

rrwellborerr

Page 31: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

31

)4(ln2.141

ln6.70

)(,

)3(ln2.141

ln6.70

)1()2(

)1(80907.01064.2

ln1

ln6.70

)2(80907.01064.2

ln1

ln6.70

2

2

4

2

4

2

w

s

w

s

swrs

w

s

sw

s

swsrss

t

s

ssrssi

t

s

wswsi

r

r

kh

qB

r

r

hk

qBpp

zonedamagenokkforSimilarity

r

r

hk

qB

r

r

hk

qBpp

c

tk

rhk

qBpp

c

tk

rhk

qBpp

Page 32: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

32

0For

. n torather tha toalproportioninversely

is zone altered in the drop pressure that thestatesequation This

)9.1(ln12.141

,

Eq.(4)]-[Eq.(3) zone damage across drop pressure Additional

ss

s

w

s

s

wrswsrsss

wswssrss

pkk

kk

r

r

k

k

kh

qB

ppppp

pppppFor

Page 33: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

33

87lim0,,

lim0,,

)10.1(ln1

)11.1(21688

ln6.70

ln121688

ln6.70

ln12.1411688

ln6.70

1688ln

6.70

Eq.(1.9)] and Eq.(1.7d) [from is wellboreat the drop pressure The

).(stimulatety permeabili enhancedor (damage)ty permeabili reduced aWith

2

2

2

2

oritlowerskkstimulatediswellif

sforituppernoskkdamagediswellIf

r

r

k

kswhere

skt

rc

kh

qBppor

r

r

k

k

kt

rc

kh

qB

r

r

k

k

kh

qB

kt

rc

kh

qBpp

pkt

rc

kh

qBpp

s

s

w

s

s

wtwfi

w

s

s

wt

w

s

s

wtwfi

swt

wfi

Page 34: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

34

80907.0ln2

1

1064.2

42

1

1688ln6.70

1688ln6.70

ln1688

ln6.70

21688

ln6.70

Eq.(1.11) From

2

2

42

2

2

22

2

D

DD

swt

DD

DiD

sws

st

swt

swt

wtwfi

r

tpor

erc

kttwhere

t

rEp

radiuswellboreeffectiveerrwhere

kt

rc

kh

qB

kt

erc

kh

qB

ekt

rc

kh

qB

skt

rc

kh

qBpp

Page 35: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

35

hrstandftratp

hrstandftratp

hrstandftratpCalculate

sftr

psip

fthpsic

STBRBBmdk

ftrcp

DSTBq

oilonlypoductingiswellTheGiven

solutionfunctionEithe

guwellborethebeyondpressuresofnCalculatioExample

e

i

t

o

w

3100?)3(

310?)2(

31?)1(

03000

23.03000

150105.1

/475.110.0

5.072.0

/20

:

sin1.1

15

)7.1(80907.0)ln(2

1

)7.1()4

(2

1),(

127)5.0(23.0105.172.0

31.010637.210637.2

2

2

25

4

2

4

br

t

at

rErtp

rc

ktt

Solution

D

D

D

DiDDD

wt

D

Page 36: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

36

psip

pp

r

tpb

psippkh

qBpp

qB

ppkh

PorTablefrom

EEEpa

r

t

r

rrftrAt

i

D

DD

i

i

i

iiiD

D

D

wD

257347.4263000

47.42693.199133.2

133.22

266.480907.0)

2

127ln(

2

180907.0)ln(

2

1)2,127()

25754253000425

75.4251501.0

72.0475.1202.1411295.2

2.1411295.2

1295.2259.42

1

2.141

)(

)4.1.1()259.4(2

1

)008.0(2

1)10874.7(

2

1)

1274

2(

2

1)2,127()

75.314

1272

5.0

11)1(

22

32

2

Page 37: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

37

)4.1.1(

1691.0)3382.0(2

180907.0)

20

127ln(

2

1

)322.0(2

1)]787.0([

2

1)

1274

20(

2

1)20,127(

80907.0)ln(2

1

)4

(2

1),(

3175.020

12720

5.0

1010)2(

2

2

2

2

22

ponTablefrom

EEp

r

t

t

rErtp

r

t

r

rrftrAt

iiD

D

D

D

DiDDD

D

D

wD

Page 38: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

38

psip

pp

p

psipkh

qBpp

qB

ppkh

p

i

D

i

i

D

8.30338.333000

80.3393.199)169.0(

169.0)3382.0(2

1)20,127(

296818.323000

18.3293.199161.02.141

161.0

161.02.141

)(

161.0)322.0(2

1)20,127(

Page 39: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

39

47.2)943.4(2

1

80907.0)10175.3ln(2

1

80907.0)ln(2

1),(

0)0(2

1)]7.78([

2

1)

1274

200(

2

1)

4(

2

1),(

10175.3200

127200

5.0

100100)3(

3

2

22

322

D

DDDD

i

iiD

DiDDD

D

D

wD

r

trtp

pp

EEt

rErtp

r

t

r

rrftrAt

Page 40: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

40

wD

wD

iD

D

D

D

D

DD

D

r

rr

rc

ktt

Bq

ppkhpwhere

t

p

r

p

rr

p

t

p

k

c

r

p

rr

p

2

2

2

42

2

000264.0

2.141

)(

1

10634.2

1

yDiffusivit ofEquation

Page 41: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

41

0 21

21

20101

2

2

2

)()(

)()()()()1(4

solution wellboreFinite (b)

80907.0)ln(2

1)

4(

2

1

solution source Line (a)

reservoir Infinite (1)

Solutions

2

uYuJu

duurJuYurYuJep

r

t

t

rEp

DDtu

D

D

D

D

DiD

D

Page 42: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

42

0 2

1

2

1

32

0 2

1

2

1

2

0101

2

)()(

)1(4)(

1,

)()(

)()()()()1(4),(

2

2

uYuJu

duetp

rwellboreAt

uYuJu

duurJuYurYuJertp

solutionwellboreFinite

D

D

tu

D

VEH

D

D

DD

tu

DD

VEH

D

Page 43: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

43

Page 44: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

44

w

eD

D

D

D

D

rD

DD

DDD

e

rr

rr

i

D

D

D

D

DD

D

r

rrat

r

p

r

por

r

pr

rallfortatp

formessDimensionl

rrforr

p

tforkh

Bq

r

pr

rallfortatpp

conditionsboundaryandInitial

t

p

r

p

rr

p

t

p

k

c

r

p

rr

p

D

e

w

0)3(

11)2(

00)1(

0)3(

0001127.02

)2(

0)1(

:

1

10634.2

1

casereservoir Circular Bounded rate,Constant

1

2

2

42

2

Page 45: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

45

. pressure uniformat isreservoir thebegins, production Before (3)

boundary.outer thisacross flow no is e that therand

, radius ofreservoir lcylindrica ain centered is , radius, bore with well well,The (2)

factor volumeformation the/][

conditions surfaceat /][

wellbore theinto , rate,constant at produces A well (1)

:conditions initial and conditionsBoundary

)1.1(10634.2

1

Eq.(1.1) ofequation y diffusivit From

Reservoir lCylindrica Bounded

42

2

i

ew

w

p

rr

STBRBB

DSTBq

qB

rt

p

k

c

r

p

rr

p

Page 46: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

46

solution rate terminal-constantHurst -Everdingen van thecalled sometimes isIt

t.developmen itsin made sassumption under the Eq.(1.1) osolution texact an isIt

0

of roots theare the

000264.0

24

3ln

2

)6.1(24

3ln

22.141

issolution The

.properties fluid androck reservoir toand time tosandface

at the, pressure, flowing relatessolution desired theof form usefulmost The

11

1111

2

12

12

12

21

2

12

12

12

21

2

2

2

functionsBesselareYandJand

rYJYrJ

rc

ktt

r

rrwhere

JrJ

rJer

r

tpor

JrJ

rJer

r

t

kh

qBpp

p

eDnnneDn

n

wtD

w

eeD

n neDnn

eDnt

eDeD

DD

n neDnn

eDnt

eDeD

Diwf

wf

Dn

Dn

Page 47: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

47

4

3ln

2

948245.0

245.01064.2

24

3ln

2

reservoir Bounded (2)

2

2

2

2

2

4

12

12

12

21

2

2

eDeD

DD

e

w

eD

eDe

n neDnn

eDnt

eDeD

DD

rr

tp

k

rctor

r

rtor

rc

kttFor

JrJ

rJer

r

tp

Dn

Page 48: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

48

12

12

12

21

2

22

2

2

2

12

12

12

21

2

0

48.9

25.025.0

25.0

24

3ln

2,

assuch (1.6) Eq. From

solution state-tyPseudostea

2

2

n neDnn

eDnt

et

eDw

eD

e

wDDe

n neDnn

eDnt

eDeD

DeDDD

JrJ

rJe

k

rctor

rr

rtor

r

rttFor

JrJ

rJer

r

trtp

Dn

Dn

Page 49: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

49

Boundary effect time analyzed from type curves

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

1.0E+05 1.0E+06 1.0E+07 1.0E+08

tD

p D

infinite reservoir

reD=3000 (re=1050 ft)

The visually deviated point from type curve analysis

tD*=1.96*106

Closed circular reservoir with reD = 3000 case

Page 50: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

50

)12.1(4

3ln

000527.02.141

4

3ln

2,

becomes .(1.6) Eq

2

2

w

e

et

iwf

eD

eD

DeDDD

r

r

rc

kt

kh

qBppor

rr

trtp

pe

e

etet

wf

Vhror

hrV

rhc

qB

rc

k

kh

qB

t

p

Eqt

2

2p

22

Since

0744.0000527.02.141

12.1

Page 51: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

51

constant are and ,for 1

)13.1(234.0

234.00744.00744.02

tp

wf

pt

wf

ptpt

et

wf

cBqVt

p

Vc

qB

t

por

Vc

qBV

c

qB

hrc

qB

t

p

well. theof volumedrainage e with th, p pressure,

average with , p pressure, reservoir original replacing involvesIt

ns.applicatio somefor useful is (1.12) Eq of formAnother

me. with ti wellboreain decline pressure of rate thefrom size

reservoir determine toseekswhich testing,limits reservoir

called sometimes, testing wellof form a toleadsresult This

i

Page 52: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

52

)14.1(0744.0

)14.1(0744.0

24615.5

24615.5

615.524

balance material Form

2

2

2

2

arhc

qBtppor

rhc

qBt

hrc

tqB

pp

hrcppt

qB

Vcppt

qB

VcppV

eti

et

eti

eti

pti

pti

Page 53: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

53

)15.1(4

3ln2.141

4

3ln

22.141

0744.0

)12.1(4

3ln

22.141

(1.12) Eqin (1.14a) Eq ngSubstituti

22

2

w

ewf

eDeD

D

etwf

eDeD

Diwf

r

r

kh

qBppor

rr

t

kh

qB

rhc

qBtpp

rr

t

kh

qBpp

)16.1(4

3ln2.141

)15.1.(

)17.1(4

3ln

000527.02.141

)12.1.(

effectskin account To

2

sr

r

kh

qBpp

EqFrom

sr

r

rc

kt

kh

qBpp

EqFrom

w

ewf

w

e

etiwf

Page 54: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

54

s

w

eeD

wfD

eDD

sw

ewf

sw

eeD

iDs

wt

D

eDeD

DD

sw

e

etiwf

er

rr

qB

ppkhpwhere

rp

aer

r

kh

qBpp

er

rr

qB

ppkhp

erc

kttwhere

rr

tp

aer

r

rc

kt

kh

qBpp

2.141

4

3ln

)16.1(4

3ln2.141

Eq.(1.16) From

2.141

1064.2

4

3ln

2

)17.1(4

3ln

000527.02.141

Eq.(1.17) From

'

'

2

4

2

2

Page 55: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

55

)18.1(

4

3ln

4

3ln

which,Form

4

3ln2.141

)16.1(4

3ln2.141

such that , ty,permeabili averagean definecan weFurther,

sr

r

r

rk

k

r

r

hk

qB

sr

r

kh

qBpp

k

w

e

w

e

J

w

e

J

w

ewf

J

trueJ

trueJ

k k , 0) (s wellstimulated sFor

k k 0),(s welldamaged aFor

Page 56: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

56

k

psiDSTBPIIndexoductivityJ

r

rB

hk

pp

qJ

w

e

J

wf

ty,permeabiliformation of

estimate good a providey necessarilnot does method This

//),(Pr

4

3ln2.141

ts.measuremen (PI)index -typroductivi

from estimated becan wella ofty permeabili theSometimes,

Page 57: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

57

?factor skin apparent the

is What ? stimulatedor damagedeither is well the

t imply tha thisdoes data), core (form 50mdkFor (3)

? k (2)

? PI (1) :Estimate

RB/STB 1.5 =B ) pressure reservoir current (at cp 0.5 =μ

ft 0.25 =r ft 1,000 =r analysis) (logft 10 =h

survey) (pressure 000,2p

(measured) 1,500 =(BHP) p

(oil) STB/D 100q :Given

testPI form wellof Analysis - 1.2 Example

J

we

wf

psi

psi

Page 58: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

58

md

pph

r

rqB

k

r

rB

hk

pp

qJ

psiDSTBpsipsi

DSTB

pp

qPIJ

wf

w

e

J

w

e

J

wf

wf

16500,1000,210

43

25.01000

ln5.05.11002.141

43

ln2.141

43

ln2.141

)2(

//2.015002000

/100)()1(

:Solution

Page 59: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

591675.0

25.0

000,1ln1

16

50

4

3ln1

4

3ln

4

3ln

4

3ln

4

3ln

43

ln

43

ln

Eq(1.18) Form b)

(badly) damaged 16md)(= k﹥ 50md)(=k a) (3) J core

w

e

J

w

e

w

e

J

w

e

Jw

e

w

e

w

e

J

r

r

k

k

r

r

r

r

k

ks

r

r

k

ks

r

r

srr

rr

k

k

Page 60: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

60

Flow Equation for Generalized Reservoir Geometry

)20.1(4

306.10ln

2

12.141

:shapes reservoir general

morein flow statesteady -pseudo modelsequation similar A

)16.1(4

3ln2.141

is area drainage

circular ain centered wellafor solution statesteady -Pseudo

2

srC

A

kh

qBpp

sr

r

kh

qBpp

wAwf

w

ewf

1.2) (Table ess.dimensionl location,

welland shape area drainage specificfor factor shape C

ft area, drainage A Where

A

2

Page 61: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

61

)21.1(

4306.10

ln21

00708.0

2

srCA

B

kh

pp

qJ

wA

wf

Page 62: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

62

Page 63: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

63x

k

Act

c

xk

Act

b

reservoircircularafor

Ac

kttwhere

k

xActorx

A

rtt

t

t

DA

twDDA

4

4

4

4

2

1064.2

exact. be toequation state-dypseudostea for the required Time

:columnlast thefromcolumn thirdThe)(1064.2

1% within accurate

be toequation state-dypseudostea for the required Time

:columnlast next to)(

1064.2

1064.2

acting infinite is reservoir a max time the:columnlast (a)

(p.9) 1.2 Table

Page 64: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

64

Boundary effect time analyzed from type curves

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

1.0E+05 1.0E+06 1.0E+07 1.0E+08

tD

p D

infinite reservoir

reD=3000 (re=1050 ft)

The visually deviated point from type curve analysis

tD*=1.96*106

Closed circular reservoir with reD = 3000 case

Page 65: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

65

Boundary effect time estimated from radius of investigation equation

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

1.0E+05 1.0E+06 1.0E+07 1.0E+08

tD

p D

infinite reservoir

reD=3000 (re=1050 ft)

The visually deviated point from type curve analysis

( I )

( II )

( III )

closed circular reservoir with reD = 3000 case

Page 66: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

66

casespecialforEqEqor

srC

A

kh

qBpp

tp

skt

rc

kh

qBpp

wAwf

wf

wtwfi

)12.1.()15.1.(

)20.1(4

306.10ln

2

12.141

Region state-dyPseudostea

region in this timeand BHPbetween iprelationsh

epredict th toavailable isequation simple No

Regiontransient -Late

log offunction linear a is

)11.1(21688

ln6.70

Region Transient

2

2

Page 67: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

67

indicates. also 1.2 Table as region, t timesignifican a spanecan region

transient -late thearea, drainage itsin center -off wellaFor indicates.

1.2 Table as area, drainage hexagonalor sequence, circular, ain centered

wellafor )t nonexisten purposes practicalfor or, ( small isregion This

RegionTransient -Late

Page 68: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

68

4

306.10ln

2

1

03.5

4

306.10ln

2

12

06.10

06.1006.10

)06.10(

)(06.10

10634.2

2.141

4

3ln

2

4

3ln

2

4

3ln

000527.0

2.141

4

3ln

000527.02.141

geometryreservoir dgeneralizefor equation flow statesteady -Pseudo

2

2

2

2

2

1

222

2

2

2

2

22

2

4

2

2

2

2

2

wAD

wAD

wAD

wAD

wAeD

wAw

e

w

e

w

eeD

wD

iD

w

eeD

eDeD

DD

w

e

w

e

DD

w

e

e

wfi

w

e

eiwf

rC

At

A

rCpor

rC

At

A

rCp

rC

Ar

rC

A

r

r

r

r

r

rr

rc

ktt

Bq

ppkhp

r

rrwhere

rr

tp

r

r

r

r

tp

r

r

rc

kt

Bq

ppkh

r

r

rc

kt

kh

Bqpp

Page 69: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

69

4

3ln2

4

3ln

2

12

4

3

60.31

06.10ln

2

1

03.5

60.31

60.31)1(

4

306.10ln

2

1

03.5

geometryreservoir dgeneralizefor equation flow statesteady -Pseudo

2

2

2

2

2

2

2

2

2

2

2

2

w

e

e

wDD

w

e

e

wDD

w

eD

e

wD

Ae

wAD

wAD

r

r

r

rtp

r

r

r

rtp

r

rt

r

rp

CrA

rC

At

A

rCp

re

Page 70: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

70

3108.1ln1397.6

75.05608.0ln1397.6

4

3)32574.0ln(

2

1ln1397.6

4

332574.0ln

2

11397.6

4

3

8828.30

06.10ln

2

1

03.5

8828.30

8828.30)2(

2

2

2

2

2

2

2

2

2

2

2

2

2

2

w

e

e

wDD

w

e

e

wDD

w

e

e

wDD

w

eD

e

wD

w

eD

e

wD

Aee

r

x

x

rtp

r

x

x

rtp

r

x

x

rtp

r

xt

x

rp

r

xt

x

rp

CxxA

xe

xe

Page 71: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

71

Page 72: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

72

mdkpsiccp

acresftA

t 1001011

%202.04001042.17

:Given

Geometry Reservoir dGeneralize analysis flow -1.3 Example

15

26

Page 73: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

73

hrs. 400 and 200, 30, of timeelapsedat drops

pressure wellboreand rate flowconstant relating equations te wri

square, a of quadrants theof onein centered wellFor the (3)

2.1,3.0,0.3,10

if 1,part in well theofeach for

, psi 500p-p with rate production stabilized and PI (2)

1% within toaccurate is state-dypseudostea the(c)

and exact; is state-dypseudostea the(b)

acting infinite is reservoir the(a)

for which hoursin timeThe (1)

: Calculate

wf

STBRBBandftrsfth w

DA

t

w

wt

wDDA

tt

t

t

Ac

kt

A

r

rc

kt

A

rtt

1320

10577.7

1042.172.01011

1001064.21064.21064.2

:Solution

4

65

442

2

42

Page 74: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

74

AA

AA

wA

wf

CC

CC

J

srC

AB

kh

pp

qJ

ln6.0565.15

08.7

7.2ln6.010051.2ln6.0

08.7

25.210051.2

ln2

12.1

08.7

34

3

3.0

1042.176.10ln

2

112.1

1010000708.0

21.1

4

36.10ln

2

1

00708.0

as)such (1.21 Eq From (2)

9

9

2

6

2

Page 75: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

75

JJppq

pp

qJ

assuchEqFrom

wf

wf

500

21.1

Page 76: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

76

error 1%n withi

accurate isequation state-dypseudostea thehrs, 400For t

accurate)yet not isequation state-dypseudostea the(i.e.

period transient -latein is reservoir thehrs, 200For t

period acting infinitein is reservoir thehrs, 30For t

(1) of results theFrom (3)

20.14

306.10ln

2

12.141

400

200

11.121688

ln6.70

30

2

2

srC

A

kh

qBpp

hrsFor

writtenbecanequationsimpleno

hrstFor

skt

rc

kh

qBpp

hrstFor

Equations

wAwf

wtwfi

Page 77: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

77

alue.constant v aapproach will wellborein the stored liquid

ofamount therate, producing surfaceconstant at , timeflow increasingWith

zero. be will well theto

formation thefrom rate flow initial theand wellbore,in the stored that be

willproduced oilfirst theflow, initiate and surface at the valveaopen weIf

wellbore.in theheight mequilibriu

some toliquid ofcolumn asupport willpressureReservoir pressure.

unchanging and uniformwith reservoir ain welloilin -shut aConsider

rate) flow sandface (variable rates flow variable storage Wellbore

storage orewith wellbreservoir infinitein flow Radial

cause

Page 78: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

78

Development of a mathematical relationship between sandface (formation) and surface flow rates

STBRBBDSTBqqftVhrst

V

td

dqBBq

rate

onAccumulati

out

ratemass

in

ratemass

wellboretheinblanceMass

sfwb

wbsf

/][;/][,;][;][

61458.524

:

) level liquid changing ( 1 Example (a)

3

Page 79: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

79

)24.1(144

)24.1(144

144

144

1][

1][

][][

)23.1(144

sin

)22.1(615.5

24615.5

24

615.5

24

2

2

2

2

2

223

appdt

d

g

g

dt

dhor

dt

dh

g

gpp

dt

d

g

ghpp

in

ft

ft

lb

slb

ftlbsft

lb

g

gh

sft

lbft

s

ft

ft

lbgh

pressuresurfacepg

ghppce

Bqqdt

dhA

BqqhAdt

d

BqqV

dt

d

twc

ctw

ctw

f

f

m

m

c

mm

tc

tw

sfwb

sfwb

sfwb

Page 80: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

80

)28.1(24

.,.),

(,

)27.1(24

)26.1(615.5

144tan

24

)25.1(615.5

14424

)25.1(615.5

)144)(24(

144

615.5

24

have weEq.(1.22),in Eq.(1.24a) ngSubstituti

dt

dp

B

Cqq

dt

dppp

dt

deiassumptionvalidynecessarit

notandmajorappressuresurfaceunchangingorzeroFor

ppdt

d

B

Cqq

g

gAtconsstoragewellboreaCwhere

qqppdt

d

B

C

aqqppdt

d

g

gA

Bor

Bqqppdt

dA

g

g

Bqqppdt

d

g

gA

wssf

wtw

t

tws

sf

cwbs

sftws

sftwcwb

sftwwbc

sftwc

wb

)22.1(615.5

24

)24.1(144

Bqqdt

dhA

appdt

d

g

g

dt

dh

sfwb

twc

Page 81: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

81

31.10373.0

1064.2

1008.7

1064.2

1008.7

1

1

0

)30.1(1064.2

)29.1(1008.7

variablesessDimensionl

2

2

4

3

2

4

3

2

4

3

D

D

wt

iw

D

D

w

i

D

D

w

i

D

DD

w

D

D

D

D

D

ww

i

wD

i

wiD

dt

dp

rhc

Bq

dt

dp

dt

dp

rc

k

kh

Bq

dt

dp

rc

k

Bqkh

dt

dp

dt

dt

dp

dpdt

dt

dt

dp

dp

dp

dt

dp

tatratesurfacetheqwhere

rc

ktt

Bq

ppkhp

Page 82: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

82

)34.1(

)33.1(894.0

894.0

)32.1(894.0

0373.024

,28.1.int31.1.

2

2

2

2

D

DsD

iisf

wt

ssD

D

DisDsf

D

Di

wt

ssf

D

D

wt

sisf

D

D

wt

issf

dt

dpC

q

qqq

rhc

CCwhere

dt

dpqCqq

dt

dpq

rhc

Cqq

dt

dp

rhc

Cqqq

dt

dp

rhc

Bq

B

Cqq

haveweEqoEqngsubstituti

Page 83: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

83

.negligible be willrate sandfaceor storage wellboreofeffect The

1

smallfor or ] smallor small i.e., [ smallfor :Note

storage. bore with wellliquidility compressibslightly a of flow

rate-constant of problem for thecondition boundary inner theis This

35.11

1

becomes Eq.(1.34) , )( i.e., ,production rate-constant For the

q

q

dt

dpACC

dt

dpC

q

qor

dt

dpCqq

qqtq

sf

D

DwbssD

D

DSD

sf

D

DSDsf

i

2

894.0

wt

ssD hrc

CCwhere

g

gAC cwb

s 615.5

144

Page 84: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

84

hrt

psip

psiconditionswellboreat

wellboretheinfluidtheofilitycompressibthec

bblwellboreofvolumetheV

STBRBB

DSTBqqwhere

pcVt

d

dqBBq

rate

onaccumulati

out

ratemass

in

ratemass

q

w

wb

wb

sf

wwbwbsf

][

][

,)(

][

,][

/][

/][,

)24

(

wellborein the balance Mass

. rate, surfaceat produced is that and gas)or (liquid

phase-single a contains that 1.5) (fig. wellboreaConsider

up) field being (Wellbore 2 Example (b)

1

Page 85: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

85

2

894.0

1

645.25

24

tan wellbore,in the gas for the :Note

)28.1.()38.1.(

)38.1(24

)37.1(

)37.1(24

)36.1(24

wt

ssD

D

DsD

sf

wbwbs

cwbs

wssf

w

wbwbwbs

wssf

wbwbs

wwbwbsf

wwbwbsf

hrc

CCwhere

dt

dpC

q

q

VcCor

g

gACwhere

dt

dp

B

Cqq

tconsp

VVcC

EqEqdt

dp

B

Cqq

aVcCLetdt

dp

B

cVqqor

dt

dpcVBqq

Page 86: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

86

distortion storage wellboreof End (b)

line slop-unit of Presence (a)

:point at thismention special require 1.6 figure of purposes Two

. and , of esgiven valuwith formation

ain wellafor determined becan ) thus(and of values1.6, figure From

][Eq.(1.35)equation storage wellboreith theequation wy diffusivit radial the

for fig.1.6in solutions Analytical

sCt

pp

sDD

wD

Page 87: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

87

.0for as same thei.e., storage reany wellbobeen

never had thereif as same thebe toequations flow theosolution t the

expect would we), when (i.e. ceased has storage oreWhen wellb

1.6) (fig. Distortion storage wellboreof End

sD

sf

C

qq

Page 88: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

88

Page 89: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

89

)42.1(1or

unity of slop a have willlog v.s.log ofgraph A

)41.1(logloglog

)40.1(

)39.1(01

0for

35.11

assuch Eq.(1.35) From

formation. thefrom comes

none and wellbore thefrom comes production all as long as remains appears line This

graph. on thepresent is slop) 45 with line (i.e.

" line slop-unit " a , of smost valuefor and , of egiven valu afor imesearliest tAt

Line Slop- Unitof Presence

00

D

DSD

DD

DsDD

DsDD

p

DSD

t

D

DSDDD

DSD

sf

D

DSD

sf

SD

t

pC

tp

pCt

pCtdpCdt

dpCdtordt

dpC

q

dt

dpC

q

q

sC

DD

Page 90: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

90

)43.1(5.360

bygiven is ceases distortion storage wellbore

at which timeessdimensionl that theisn observatio usefulAnother

line. slop-unit theof ncedisappeara after the cycles log half

a and oneely approximat occurs , ), " distortion storage wellbore

of end " the(called time that thisisn observatio empirical useful One

time.elapsed sufficientafter identical

become do 0for and finitefor solutions that theNote

sDD

wbs

sDsD

Cst

t

CC

Page 91: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

91

1.4 Radius of investigation

)elapsed time,properties fluid rock,formation (

well.ain change ratio a flowingformation a into

moved has transientpressure a that distance theis , ion,investigat of Radius

fr

r

i

i

Page 92: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

92

.negligible is valueoriginal thefrom pressurein drawdown the

which beyondpoint a always is thereshown, timeflow of range For the

increases. timeflow asreservoir theintofurther moves well the

producingby caused ) transientpressure(or edisturbanc pressure (2)The

timeflow increasingith steadily w decreases

timeflow increasingith steadily w decreases (1)

importantly particular are nsobservatio Two

valuefixedtheat

wellboretheat

p

p

Page 93: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

93)47.1(

10637.24

948

948

40

4

:

,max,

;)(tan

:follows as derived becan and between iprelationsh The

1959). C., J. Jaeger, and S. H. (Carslaw, medium infinitean in source line

ousinstantanean for equation y diffusivit theosolution t theFrom . and

between iprelationsh seek the We volume.fluid theofon introductiafter

at time maximum itsreach will radiusat edisturbanc theformation;

theinto edisturbanc pressure a introducesinjection This liquid. of

volumeainject ously instantane which weinto wellaconsider Now

2

142

1

224/

3

214/

21

1

4/1

22

2

tti

itim

trtr

im

D

tri

mi

mi

mi

c

kt

c

ktr

k

rcrte

t

rce

t

c

dt

dp

zerotoequalsettingandatingdifferenti

byfoundbecanrattimeimumat

ttqftconscwhere

et

cpp

tr

tr

tr

Page 94: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

94

well.ain change rateany after any timeat achieved

ion investigat of radius thecalculate toEq.(1.47) use also We(2)

constantfor is Eq.(1.47) (1) :Note

)47.1(10637.24

948

2

142

1

q

c

kt

c

ktr

tti

Page 95: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

95

t

td

c

kt

c

ktr

CREarlougherbyAnalysisTestWellbyAdvances

drainageofRadius

1189

029.0

.).,(

ion investigat of RadiusEquivalent

Page 96: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

96

)47.1(948

4

41064.24

1064.2

4

1064.2

2

5.0

ln5.05.0

ln

0.5 give papersMany

ln5.0

log

2

24

2

2

4

2

2

2

42

2

1

c

ktrtr

rtc

ktr

rc

kt

r

r

rc

kt

r

r

tr

r

tr

r

tr

r

wDi

wDi

ww

i

ww

i

Dw

i

Dw

i

Dw

i

Page 97: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

971.3 Examplein dillustrate as

different, becan stabilize to timeshapes, area-drainageother For

. radius of area drainage lcylindrica afor appliesequation This

)48.1(948

reservoir, test a ofboundary

reach the to transientpressure afor required time thei.e., flow, stabilized

achieve torequired timeoflength theestimating of means a provide to(3)

formation. in thedepth desired the test to torequired time theestimate To

:design test for well guide a provide to(2)

ity.heterogenereservoir massive

someor boundary reservoir a of vicinity thereaches -- timesLong

wellbore,enearest th ks,ty,permeabili altered of zone in the is -- imesEarliest t

:curvedrawdown pressureor buildup pressure a of shape eexplain th help to(1)

ioninvestigat of radius theof uses The

2

k

rct

r

r

ets

i

i

Page 98: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

98

rate.in change a following rateconstant at productionor

injection continuousfor defined wellless becomes oflocation Exact (3)

well.a from productionor intoinjection

ofburst ousinstantanean following radius reaches edisturbanc

pressure maximum time thedescribingfor only exact is Eq.(1.47) (2)

Eq.(1.47)

ofaccuracy thedecrease willitiesheterogeneReservoir reservoir.

lcylindrica isotropic, s,homogeneou afor only correct exactly isIt (1)

:ioninvestigat-of-radius theof uses theof sLimitation

i

i

r

r

Page 99: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

99

?q (2)

radius.ft 1,000 than more ofcylinder a

drain will wellthat theensure tolongly sufficient

for y wellexploratoran on test flow arun to, ? t(1) Find

5.0102

2.0100

:Given

ioninvestigat of radius of nCalculatio 1.4 Example

15

cppsic

mdk

t

Page 100: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

100

analysis.for useful be toprecision sufficient with recorded

becan me with tichange pressure that largely sufficient rate flowsany q

(2)

8.75100

)2000(1025.02.0948948

948

948

47.1

000,2000,12

(1)

:Solution

252

2

2

1

hrsk

rct

rckt

c

ktr

sucheqFrom

ftftr

it

it

ti

i

Page 101: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

101

1.5 The Principle of Superposition

reservoir. in the wellsthe

ofeach in flowby causedpoint at that drops pressure theof

sum theis reservoir ain point any at drop pressure totalThe

ionsuperposit of principle The

ns.restrictio

theseof some removecan ion superposit theofn applicatio The

zero. at time beginning rateconstant at wellproduction afor (2)

reservoir, in the

wellsingle a of production by the casued reservoir, infinitean in (1)

ondistributi pressure the

describingfor only applicable be toappearsequation flow theto

solution usefulmost theofsolution function -Ei thepoint, At this

Page 102: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

102

kt

rc

kh

qppp

r

trtp

kt

rcE

kh

qppp

t

rErtp

wi

D

DDDD

tii

D

DiDDD

2

2

D

2D

D

2D

2

2

1688ln6.70

80907.0ln2

1,

100t

ror 0.0025

4t

r

solution ion approximat -Log

9486.70

42

1,

solutionfunction -Ei

Page 103: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

103

InterferenceTest• Consider three wells, well

A, B, and C that start to produce at the same time from infinite reservoir (Fig. 1.8). Application of the principle of superposition shows that

kt

rcEi

kh

qBppor

kt

rcEi

kh

qBpp

ionsapproximatarithmicandfunctionsEioftermsIn

ppp

pp

ti

ti

CwelltodueBwelltodueAwelltodue

Awellattotalwfi

2

2

9486.70

)7.1(948

6.70

,log

Page 104: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

104

)49.1(948

6.70

9486.702

1688ln6.70

)49.1(948

6.70

9486.702

9486.70

2

22

2

22

kt

rcEi

kh

Bq

kt

rcEi

kh

Bqs

kt

rc

kh

Bq

akt

rcEi

kh

Bq

kt

rcEi

kh

Bqs

kt

rcEi

kh

Bq

pp

ACtc

ABtBA

AwtA

ACtC

ABtBA

wtA

Awellattotalwfi

Page 105: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

105

• In Eq.(1.49), there is a skin factor for well A, but does not include skin factors for wells B and C. Because most wells have a nonzero skin factor and because we are modeling pressure inside the zone of altered permeability near well A, we must include its skin factor.

• However, the pressure of nonzero skin factors for wells B and C affects pressure only inside their zones of altered permeability and has no influence on pressure at Well A if Well A is not within the altered zone of either Well B or Well C.

Page 106: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

106

Bounded reservoir• Consider the well (in fig. 1.9)

a distance, L, from a single no-flow boundary. Mathematically, this problem is identical to the problem of a two-well system; actual well and image well.

)50.1(

29486.702

1688ln6.70

29486.702

9486.70

)()(

22

22

kt

LcEi

kh

Bqs

kt

rc

kh

Bq

kt

LcEi

kh

Bqs

kt

rcEi

kh

Bq

pppp

pp

twt

tA

wt

IwelltodueiAwelltoduei

Awellattotalwfi

Page 107: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

107

• Extensions of the imaging technique also can be used, for example, to model

(1) pressure distribution for a well between two boundaries intersecting at 90°; (2) the pressure behavior of a well between two parallel boundaries; and (3) pressure behavior for wells in various locations completely surrounded by no-flow boundaries in rectangular-shape reservoirs.

• [ Matthews, C. S., Brons, F., and Hazebroek, P.: “A method for determination of average pressure in a bounded reservoir,” Trans, AIME (1954) 201, 182-191

Page 108: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

108

Variable flow-rate

? well theof sandface at the pressure theisWhat

0

rateat produces wellawhich

in 1.10) (fig. case heConsider t

23

212

11

ttq

tttq

ttq

)51.1(2

1688ln6.70

21688

ln6.70

21688

ln6.70

2

223

1

212

21

321

sttk

rc

kh

Bqq

sttk

rc

kh

Bqq

skt

rc

kh

Bq

ppp

ppp

wt

wt

wt

welltoduewelltoduewelltodue

totaltotalwfi

Page 109: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

109

• Proceeding in a similar way, we can model an actual well with dozens of rate changes in its history

• we also can model the rate history for a well with a continuously changing rate (with a sequence of constant-rate periods at the average rate during the period).

Page 110: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

110

STB/D? 300at days 5 of period flow a

followingday 1for in shut been has wellflowing when the well(A)flowing the

from500ft in well-shut ain be drop pressure theWhat will

16.0101843

2544.0/32.12500

:properties following

thehave that reservoir ain completed is wellflowingA

:Given

ionsuperposit of Use1.5 Example

16

psicfth

mdkcpSTBRBBpsip

t

i

Page 111: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

111

0381.04325

32.144.06.706.70

01.1225

500101804.006.0948948sin

9489486.70

9486.70

9486.70

:

262

1

2

12

2

1

1

2

12

2

1

kh

Bk

rcce

ttk

rcEiqq

kt

rcEq

kh

Bpp

ttk

rcEi

kh

Bqq

kt

rcEi

kh

Bqpp

Solutions

t

ttii

t

tBwelli

psi

EiEi

EiEippi

37.16

560.0993.143.11

500.00834.03000381.0

241

01.123000

246

01.123000381.0

Page 112: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

112

1.6 Horner’s Approximation• In 1951, Horner reported an approximation that can be used in

many cases to avoid the use of superposition in modeling the production history of a variable-rate well.

• With this approximation, we can replace the sequence of Ei functions, reflecting rate changes, with a single Ei function that contains a single producing time and a single producing rate.

• The single rate is the most recent nonzero rate at which the well was produced; we call this rate qlast for now.

• This single producing time is found by dividing cumulative production from the well by the most recent rate; we call this producing time tp, or pseudoproducing time

)52.1()/(,

)(,24)(

DSTBqraterecentmost

STBNwellfromproducingcumulativehourst

last

pp

Page 113: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

113

? applicableit is conditionst Under wha(2)

?ion approximat for this basis theis What (1)

:point at thislogically arise questions Two

)53.1(9486.70

equation simple theuse

can wereservoir, ain point any at behavior pressure model toThen,

2

p

tlasti kt

rcEi

kh

Bqpp

Page 114: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

114

(1) The basis for the approximation is not rigorous, but intuitive, and is founded on two criteria:

(a) Use the most recent rate, such a rate, maintained for any significant period

(b) Choose an effective production time such that the product of the rate and the production time results in the correct cumulative production. In this way, material balance will be maintained accurately.

Page 115: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

115

• (2) If the most recent rate is maintained sufficiently long for the radius of investigation achieved at this rate to reach the drainage radius of the tested well, then Horner’s approximation is always sufficiently accurate.

• We find that, for a new well that undergoes a series of rather rapid rate changes, it is usually sufficient to establish the last constant rate for at least twice as long as the previous rate.

• When there is any doubt about whether these guidelines are satisfied, the safe approach is to use superposition to model the production history of the well.

Page 116: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

116

Example 1.6 – Application of Horner’s Approximation

• Given: the Production history was as follows:

simulated? be well

for thishistory production theshould how not, If

case? for this adequateion approximat sHorner' Is (2)

? t(1) :Find p

Page 117: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

117

case. for the adequateprobably ision approximat sHorner' Thus,

276.2)(26

)(72)2(

5.1757.22

16624

7.22

68460522424

7.22)(1

)(24

)(72

)(68)1(

:

hrs

hrs

t

t

hrsq

Npt

DSTB

Day

hrs

hrs

STBq

Solutions

lasttonext

last

lastp

last

Page 118: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

118

Page 119: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

119

Reference Books• (A) Lee, J.W., Well Testing, Society of petroleum Engineers of AIME, Dallas, Texas,,

1982.

• (B) Earlougher, R.C., Jr., Advances in Well Test Analysis, Society of Petroleum Engineers, Richardson, Texas, 1977, Monograph Series, Vol. 5.

• (1) Carlson, M.R., Practical Reservoir Simulation: Using, Assessing, and Developing Results, PennWell Publishing Co., Houston,TX, 2003.    

 (2) FANCHI, J.R., Principles of Applied Reservoir Simulation, Second Edition, PennWell Publishing Co., Houston,TX, 2001.    

 (3) Ertekin, T., Basic Applied Reservoir Simulation, PennWell Publishing Co., Houston,TX, 2003.    

 (4) Koederitz, L.F., Lecture Notes on Applied Reservoir Simulation, World Scientific Publishing

• Company, MD, 2005

Page 120: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

120

Introduction

• This course intended to explain how to use well pressures and flow rates to evaluate the formation surrounding a tested well , by analytical and numerical methods.

• Basis to this discussion is an understanding of

(1) the theory of fluid flow in porous media, and

(2) pressure-volume-temperature (PVT) relations for fluid systems of practical interest.

Page 121: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

121

Introduction (cont.)• One major purpose of well testing is to determine the ability of

a formation to produce fluids.

• Further, it is important to determine the underlying reason for a well’s productivity.

• A properly designed, executed, and analyzed well test usually can provide information about

FORMATION PERMEABILITY, extent of WELLBORE DAMAGE (or STIMULATION),

RESERVOIR PRESSURE, and (perhaps) RESERVOIR BOUNDARIES and HETEROGENEITIES.

Page 122: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

122

Introduction (cont.)

• The basic test method is to create a pressure drawdown in the wellbore, this causes formation fluids to enter the wellbore.

• If we measure the flow rate and the pressure in the wellbore during production or the pressure during a shut-in period following production, we usually will have sufficient information to characterize the tested well.

Page 123: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

123

Introduction (cont.)

• This course discusses(1) basic equations that describe the unsteady-state flow of fluids in

porous media,(2) pressure buildup tests,(3) pressure drawdown tests,(4) other flow tests,(5) type-curve analysis,(6) gas well tests,(7) interference and pulse tests, and(8) drillstem and wireline formation tests

• Basic equations and examples use engineering units (field units)

Page 124: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

124

Chapter 1 Fluid Flow in Porous Media

Page 125: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

125

1.1 Introduction

(a) Discussion of the differential equations that are used most often to model unsteady-state flow.

(b) Discussion of some of the most useful solutions to these equations, with emphases on the exponential-integral solution describing radial, unsteady-state flow.

(c) Discussion of the radius-of-investigation concept

(d) Discussion of the principle of superposition Superposition, illustrated in multiwell infinite reservoirs, is used

to simulate simple reservoir boundaries and to simulate variable rate production histories.

(e) Discussion of “pseudo production time”.

Page 126: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

126

1.2 The ideal reservoir model

• Assumptions used (1) Slightly compressible liquid (small and constant compressibility) (2) Radial flow (3) Isothermal flow (4) Single phase flow

• Physical laws used (1) Continuity equations (mass balances) (2) Flow laws (Darcy’s law)

Page 127: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

127

Derivation of continuity equation

Page 128: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

128

(A) In Cartesian coordinate system

wvu ,,V of fieldvector velocity a with

dz) dy, (dx, volumecontrol fixed small infinitean For

Page 129: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

129

CSCV

sys

sys

syssys

CSCV

sys

dAnvdVtdt

dmdm

dm

dm

dB

massmBFor

dAnvdVtdt

dB

0

1

t theorem transporReynolds From

areaApparentA

VvelocityApparentv

volumeTrueV

volumeApparentVwhere

dAnvVdtdt

dm

V

a

CSCV

sys

][

][

][

][

0

of volumeain exist matrix rock and space porousin which media porous aIn

Page 130: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

130

)(][

][

)(][

,derivation In the

areamatrixareaporeareaApparentA

velocityApparentv

volumematrixvolumeporevolumeApparentV

onaccumulatiofRate

systemthe

outmass

ofRate

systemthe

omass

ofRate

aVdt

AvAv

AvAvVdt

dAnvVdt

dAnvVdtdt

dm

CVioutiii

iiniii

iiniii

ioutiii

CV

CSCV

CSCV

sys

int

)(

0

0

0

Page 131: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

131

)(

tan0

bdxdydzt

Vdt

or

dxdydzt

dVt

dVt

Vdt

dVintconsanddVdxdydzFor

CV

CV

)(

).().(

cdxdydzt

AvAv

bEqandaEq

ioutiii

iiniii

dxdydz

z

wwwdxdyz

dxdzdyy

vvvdxdzy

dydzdxx

uuudydzx

flowmassoutletflowmassInletFace

Av iii

estimated becan of term the2, pageon figure on the Base

Page 132: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

132

wvuvzyx

where

vt

z

w

y

v

x

u

t

dxdydzt

dxdydzz

w

y

v

x

u

dxdydzt

dxdydzz

wwwdxdy

dxdzdyy

vvvdxdzdydzdx

x

uuudydz

,,,,

0

0

Eq.(c) into term theseIntroduce

Page 133: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

133

(B) In Cylindrical Polar Coordinates

dzrddr ,, volumecontrol fixed malinfinitesian For

Page 134: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

134

CSCV

sys

sys

syssys

CSCV

sys

dAnvdVtdt

dmdm

dm

dm

dB

mBFor

dAnvdVtdt

dB

0

1

t theorem transporReynolds From

dzrddrt

Vdt

dzrdrdFor

onaccumulatiofRateoutmass

ofRate

inmass

ofRate

aVdt

AvAv

AvAvVdt

CV

CVioutiii

iiniii

iiniii

ioutiii

CV

0

)(

0

media porousIn

Page 135: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

135

dzdrrdvz

drrdvdrrdvrddrdirectionz

rddrdzvr

drdzvdrdzvdzdrdirection

drdzrdvr

dzrdvdzrdvdzrddirectionr

flowmassoutletflowmassInletFace

t

zzz

rrr

1

topheon figure on the Base

Page 136: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

136

zrzr

zr

zr

zzz

rrr

AAAAAz

Ar

rArr

Awhere

vt

vz

vr

rvrrt

drdzrdDividing

dzrdrdt

drdzrdvz

drdzrdvr

drdzdrvr

dzrdrdt

dzdrrdvz

drrdvdrrdv

rddrdzvr

drdzv

drdzvdrdzrdvr

dzrdvdzrdv

,,11

0

011

1

1

Eq.(a) into term theseIntroduce

Page 137: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

137

direction radial in the area

section-crossunit per rate flow c volumetriThe

sup

dim,

)2.(0)(1

media porousIn

0)(1

direction)-(r flow ldimensiona-oneIn

0)()(1

)(1

assuch s,coordinate lcylindricafor continuity ofequation For the

velocityerficialv

ensionlessporositywhere

Arvrrt

rvrrt

vz

vr

rvrrt

r

r

r

zr

Page 138: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

138

ftzyxpsipcp

mdkD

RBq

ftD

RBuwhere

z

pku

A

q

y

pku

A

q

x

pku

zz

yyy

xxx

][,,][][

][][][

)00694.0(001127.0

001127.0

001127.0

law sDarcy' -- laws Flow

2

Page 139: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

139

)(10328.6][

1

61458.5][

][001127.0

3

3

2

2

D

ft

r

pk

bbl

ft

ftD

bbl

ftD

bbl

r

pkv

flowradialIn

r

)3.(10634.2

24

110328.6

4

3

Ahr

ft

r

pkv

hr

Day

D

ft

r

pkv

r

r

Page 140: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

140

Darcy and practical units

Page 141: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

141

)5.(10634.2

11

10634.21

010634.21

)2.(0)(1

Eq.(A.2) into Eq.(A.3) Sub.

4

4

4

Atr

pkr

rror

r

pkr

rrt

r

pkr

rrt

Arvrrt r

)5.(10634.2

1

10634.2

1

)5..(

...

4

4

aAt

p

pkr

pr

rror

tr

pr

r

k

r

becomesAEq

constconstconstkIf

Page 142: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

142

)7.(

)7.(

ln

1

1

)6.(1

1

),(1

liquid lecompressibslightly For

)(

)(

2

1

aAcep

epp

Ae

ppc

dcdp

dcdp

Adp

d

dp

dc

dp

d

dp

md

m

mVVm

dp

dV

Vc

o

o

o

oo

ppco

ppco

ppco

oo

p

p

Page 143: Well Testing. 2 3 4 5 6 7 8 9 10 11 12.

143

equationy diffusivit a is This)9.(10634.2

1

)2()1(

0

10634.2

1

10634.2

1

10634.2

1

10634.2

1

)5.(10634.2

1

)5..(

4

2

4

2

)(

)(4

)()(

)(4

)()(

)(4

)(

4

At

p

k

c

r

pr

rr

smallveryisgradientpressurer

psmallveryiscbecause

r

pcwhere

t

p

k

c

r

pc

r

pr

rr

ebyDividing

t

pce

kr

pce

r

p

r

pr

re

r

t

pce

ke

rr

p

r

pr

re

r

t

pce

kr

per

rr

aAt

p

pkr

pr

rr

aAEqFrom

o

ooo

ooo

oo

ppco

ppco

ppco

ppco

ppco

ppco

ppco

ppco

ppco