WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de...

29
Direct Displacement Design Methodology for Woodframe Buildings WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota State University Quake Summit 2010, NEES & PEER Annual Meeting, Oct-9, San Francisco

Transcript of WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de...

Page 1: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

Direct Displacement Design Methodology for Woodframe Buildings

•WeiChiang Pang, Clemson University

•David Rosowsky, Rensselaer Polytechnic Institute

•John van de Lindt, University of Alabama

•Shiling Pei, South Dakota State University

Quake Summit 2010, NEES & PEER Annual Meeting, Oct-9, San Francisco

Page 2: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

2

Overview

Background on Displacement-based Design

NEESWood Capstone Building

Design Objectives

Shear Wall System (Database)

Design Procedure

VerificationNonlinear Time History Analyses (NLTHA)ATC-63 Collapse Analysis

Summary

Page 3: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

3

Force-based v.s. Displacement-based Design

Displacement-based Design Concept pioneered by Priestley (1998)

Displacement damage indicator / seismic performance

For concrete and steel buildings

Force-based Design

Elastic fundamental period Response of woodframe structures is highly nonlinear

Force is not a good damage indictor No guarantee damage will be manageable

Page 4: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

4

Force-based v.s. Displacement-based Design

Force-based Displacement-Based

xa tT C h

• period estimate based on building height and building type

Approximate elastic fundamental period Direct period calculation

• Actual mass and stiffness

• Capacity Spectrum Approach

Sa

TTa

Location 1Location 2

eff

TS

TL

Design spectrum (demand)

Capacity spectrum

Keff

Page 5: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

5

Force-based v.s. Displacement-based Design

R

Force-based Displacement-Based

Response Modification Factor (R-factor)

A yield point is assumed

Force is not a good damage indictor

-4 -3 -2 -1 0 1 2 3 4-15

-10

-5

0

5

10

15

Displacement (in)

For

ce (

kip)

Test M47-01

M-CASHEW Model

-100 -80 -60 -40 -20 0 20 40 60 80 100

-60

-40

-20

0

20

40

60

Displacement (mm)

For

ce (

kN)

Actual nonlinear backbone curves• Numerical model or full-scale test

Displacement is a good damage indictor

Page 6: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

6

Direct Displacement Design (DDD)

Simplified Direct Displacement Design Used to design the NEESWood Capstone Building

Does not require modal analysis (1st mode approximation)

Can be completed using spreadsheet

Drift limit NE probability other than 50%

Objectives:

1) Optimize distribution of story stiffness over the height of the building

2) Minimize the probability of a weak story

Soft-story

Page 7: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

7

NEESWood Capstone Building

Plan Dimensions: 40x60 ft

Height: 56ft (6-story wood only)

23 apartment units

Weight : ~2734 kips (wood only)

Shear Wall Design: Direct Displacement Design (DDD)

Tested on E-defense (Miki) Shake Table in July-2009

Photo credit: Courtesy of Simpson Strong-Tie

60 ft 40 ft

9ft

8ft

8ft

8ft

8ft

8ft

55.7 ft

Page 8: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

8

Design Objectives

Performance => 1) inter-story drift limit 2) hazard level 3) non-exceedance probability

LevelSeismic Hazard Performance Expectations

DescriptionExceedance

Prob.Inter-Story Drift Limit NE Prob.

Level 1 Short Return Period Earthquake

50%/50yr 1% 50%

Level 2 Design Basis Earthquake (DBE)

10%/50yr 2% 50%

Level 3 Maximum Credible Earthquake (MCE)

2%/50yr 4% 80%

Level 4 Near Fault Near Fault 7% 50%

Page 9: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

9

Design Response Spectra

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Period, T (s)

Spectr

al A

ccele

ratio

n, S

a (g)

Design Response Spectra - ATC-63 High Seismic Hazard Region

44% DBE

DBEMCE

Typical Southern California seismic hazard Site Class D (Stiff Soil)

5% damping

Page 10: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

10

Example 1st Floor Plan View

4 Apartment Units

Midply walls carry high shear

demand

Reduce torsional effect

Midply Shearwall

Standard Shearwall

Partition/ non-Shearwall

39.8 ft

59.5 ft

Y

X

Unit 3

Unit 3

Unit 2

Unit 1

ElevatorShaft

N

Stairway

Stairway

A B D E

1

2

4

6

8

10

11

Midply Wall

Midply Wall

Page 11: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

11

Shear Wall System

406mm16 in

406mm16 in

406mm16 in

Stud Sheathing

Drywall

Standard /Conventional Shear Wall

Nail in Single-shear

406mm16 in

406mm16 in

Sheathing

Drywall

Midply Shear Wall Nail in Double-shear

Construction concept developed by Forintek (Varoglu et al. 2007)

Page 12: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

12

Shear Wall Model

Hold-down Element

Contact element

Panel-to-frame nailsEnd-nail

Gravity LoadForce-Displacement Response

Framing nails

M-CASHEW model (Matlab) Shear Wall Backbone database for different nail spacings

Page 13: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

13

Wall Model Deformation Animation

13

Page 14: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

14

Example Shear Wall Database (per unit Width)

Drift (%)

Wall Height

(ft)

Wall Type/ Sheathing

Layer

Edge Nail Spacing

(in)

Ko (kip/in per ft)

Fu

(kip per ft)

Backbone Force at Different Drift Levels (kip per ft)

Wall Drift

0.5% 1.0% 2.0% 3.0% 4.0%

9

Standard

2 3.95 2.17 1.33 1.83 2.17 1.87 1.573 3.24 1.46 0.99 1.29 1.45 1.24 1.024 2.76 1.12 0.79 1.00 1.11 0.94 0.776 1.98 0.77 0.56 0.69 0.75 0.65 0.54

Midply

2 5.03 4.22 2.04 3.18 4.22 3.64 3.063 4.38 2.86 1.63 2.38 2.81 2.43 2.064 3.84 2.18 1.35 1.90 2.11 1.83 1.566 3.16 1.49 1.02 1.35 1.43 1.25 1.07

GWB 16 1.29 0.14 0.13 0.13 0.09 0.06 0.03

Design drift

Backbone forceConsider only full-height shear wall segments

Page 15: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

15

Far-field Ground Motion

Lognormally Distributedβ

E

Q

ATC-63 , 22 bi-axial ground motions MCE Level 3 Ground motion Uncertainty ≈ 0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1

2

3

4

5

6

Response SpectraGroup Scale Factor = 2.337

Unscaled Median Sa = 0.607 @ T

n = 0.63s

Scaled Median Sa = 1.419 @ T

n = 0.63s

Period (s)

Spectr

al A

ccele

ration (

g)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sta

ndard

Devia

tion o

f ln

(Sa)

Median

80%-tile

Design Spectrum

Median80th %tileDesign Spectrum

Lognormally DistributedβEQ ≈ 0.4

0.4

Page 16: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

16

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cum

ula

tive P

robabili

ty o

f In

ter-

sto

ry D

rift

Peak Inter-story Drift (%)

2.13%

80%

4 % drift

50%

1exp[ ( ) ]NE t RC NE

Target Inter-story Drift Distribution

Non-exceedance probability adjustment factor, CNE

Total UncertaintyβR= √( βEQ

2+ βDS

2)=√( 0.42

+ 0.62) ≈ 0.75

1exp[ (0.8)0.75]

1.88

80% NE Level 3

4% drift at 80% NE Level 3

1.88

Page 17: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

17

Vertical distribution factors (function of displacement)

Effective height

Effective seismic weight

j

jv

j

ii

o

oi

W

WC

0.7 total heighteffh

Weff ≈ 0.8 total weight

Substitute Structure (SDOF)

w6

o1

o2

o3

o4

hs

F1=Cv1Vb

F2=Cv2Vb

heff

effw4

w3

w2

w1

F3=Cv3Vb

F5=Cv5Vb

Original Multi-story Building

w5

F4=Cv4Vb

F6=Cv6Vb

o5

o6

Vb = Cc

Mo = Ft heff

Ft

eff

Vb = Cc

Weff

Ft = Cc Weff

eff

Keff

Substitute Structure

Mo = Ft heff

heff

effeff

Page 18: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

18

Capacity Spectrum Approach

Design base shear coefficient

eff

Cc= 0.98

Design spectrum (5% damping)

Sd, Δ

Sa,

Ft/WeffTS

TL

Design spectrum (demand) adjusted for damping and target NE probability of drift limit

Capacity spectrum

Keff

Page 19: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

19

0 1 2 3 4 50

500

1000

1500

2000

2500

Backbo

ne For

ce (kN

)

0 1 2 3 4 50

100

200

300

400

500

600X-Direction

Backbo

ne For

ce (kip

)Inter-story Drift (%)

Floor 1Floor 2

Floor 3

Floor 4

Floor 5Floor 6

0 1 2 3 4 50

500

1000

1500

2000

2500

Backbo

ne For

ce (kN

)

0 1 2 3 4 50

100

200

300

400

500

600Y-Direction

Backbo

ne For

ce (kip

)

Inter-story Drift (%)

Floor 1Floor 2

Floor 3

Floor 4

Floor 5Floor 6

(a)

Design Forces

Step 9: Design forces

j

N

bj i

v

s

isCV V

b effcV WC Design base shear coefficient effective weightBase Shear

Story Shear

Step 10: Select shear wall nail spacing

Assume no torsion

Direct summation of the wall stiffness

Full-height shear wall segments

Level 3Story Shear Requirements

Page 20: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

20

Diaphragm

Nonlinear Spring

Numerical Models Nonlinear Time-history Analysis (NLTHA) to verify the

design

M-SAWS

Page 21: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

21

Periods and Mode ShapesModel M-SAWS SAPWood Test

Mode Initial StiffnessTangent Stiffness

at 0.15% Drift Initial Stiffness Initial Period

123

0.380.360.32

0.540.510.44

0.400.390.32

0.420.41

-

0200

400600

0200

400600

8000

200

400

600

z-a

xis

(E

levation)

Mode 3T

3 = 0.443 s

y-axisx-axis -500 0 500 1000

0

200

400

600

800

Mode 3T

3 = 0.443 s

z-a

xis

(E

levation)

x-axis

0 200 400 600 800

0

200

400

600

800

Mode 3T

3 = 0.443 s

z-a

xis

(E

levation)

y-axis0 500 1000 1500

0

200

400

600

800

x-axis

y-a

xis

Mode 3T

3 = 0.443 s

Base

Diaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

0200

400600

0200

400600

8000

200

400

600

z-ax

is (

Ele

vatio

n)Mode 3

T3 = 0.443 s

y-axisx-axis -500 0 500 1000

0

200

400

600

800

Mode 3T

3 = 0.443 s

z-ax

is (

Ele

vatio

n)

x-axis

0 200 400 600 800

0

200

400

600

800

Mode 3T

3 = 0.443 s

z-ax

is (

Ele

vatio

n)

y-axis0 500 1000 1500

0

200

400

600

800

x-axis

y-ax

is

Mode 3T

3 = 0.443 s

BaseDiaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

-2000

200400

600

0200

400

0

200

400

600

z-ax

is (

Ele

vatio

n)

Mode 1T

1 = 0.537 s

x-axisy-axis-500 0 500 1000

0

200

400

600

800

Mode 1T

1 = 0.537 s

z-ax

is (

Ele

vatio

n)

x-axis

-200 0 200 400 600

0

200

400

600

800

Mode 1T

1 = 0.537 s

z-ax

is (

Ele

vatio

n)

y-axis0 500 1000

-200

0

200

400

600

800

x-axis

y-ax

is

Mode 1T

1 = 0.537 s

BaseDiaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

-2000

200400

600

0200

400600

8000

200

400

600

z-ax

is (

Ele

vatio

n)

Mode 2T

2 = 0.505 s

y-axis x-axis -200 0 200 400 600 800

0

200

400

600

Mode 2T

2 = 0.505 s

z-ax

is (

Ele

vatio

n)

x-axis

0 200 400 600

0

200

400

600

Mode 2T

2 = 0.505 s

z-ax

is (

Ele

vatio

n)

y-axis0 200 400 600 800 1000 1200

0

200

400

600

x-axis

y-ax

is

Mode 2T

2 = 0.505 s

BaseDiaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

-2000

200400

600

0200

400600

8000

500

z-ax

is (

Ele

vatio

n)

Mode 2T

2 = 0.505 s

y-axis x-axis -200 0 200 400 600 800

0

200

400

600

Mode 2T

2 = 0.505 s

z-ax

is (

Ele

vatio

n)

x-axis

0 200 400 600

0

200

400

600

Mode 2T

2 = 0.505 s

z-ax

is (

Ele

vatio

n)

y-axis0 200 400 600 800 1000 1200

0

200

400

600

x-axis

y-ax

is

Mode 2T

2 = 0.505 s

BaseDiaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

-2000

200400

600

0200

400

0

200

400

600

z-ax

is (

Ele

vatio

n)

Mode 1T

1 = 0.537 s

y-axis

x-axis

-500 0 500 1000

0

200

400

600

800

Mode 1T

1 = 0.537 s

z-ax

is (

Ele

vatio

n)

x-axis

-200 0 200 400 600

0

200

400

600

800

Mode 1T

1 = 0.537 s

z-ax

is (

Ele

vatio

n)

y-axis0 500 1000

-200

0

200

400

600

800

x-axis

y-ax

is

Mode 1T

1 = 0.537 s

BaseDiaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

Mode 1T1=0.54s

Mode 2T2=0.51s

Mode 3T3=0.44s

-500

0

500

1000

0200

400600

800

0

200

400

600

800

z-axis

(Elev

ation

)

Mode 3T

3 = 0.357 s

y-axis x-axis-500 0 500 1000

-100

0

100

200

300

400

500

600

700

800

Mode 3T

3 = 0.357 s

z-axis

(Elev

ation

)

x-axis

0 200 400 600 800

-100

0

100

200

300

400

500

600

700

800

Mode 3T

3 = 0.357 s

z-axis

(Elev

ation

)

y-axis-500 0 500 1000

0

100

200

300

400

500

600

700

800

x-axis

y-axis

Mode 3T

3 = 0.357 s

BaseDiaphragm 1

Diaphragm 2

Diaphragm 3

Diaphragm 4

Diaphragm 5Diaphragm 6

Page 22: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

22

Verification: Expected Peak Inter-story Drifts Levels 1-3: ATC-63 Far Field Ground Motions (22 bi-axial) Level 4: CUREE Near-fault Ground Motions

Design Requirement

Level 4

Level 3

Level 2

Level 1

Uniform Drift Profile

<7%

<4%<2%

<1%

Page 23: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

23

Test versus Design Drifts

Level Test Inter-Story Drift

DesignLimit

123

~0.75%~1.30%

3.08% (max)

1%2%4%

Page 24: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

24

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SMCE

= 1.50 g

SCT

= 2.57 g, Pf = 0.5

CMR = 1.71

Pf = 0.04

Median ST @ Tn (g)

Colla

pse

Prob

abilit

y

Unadjusted Collapse Fragility Curve for NEESWood Capstone Building (6-story Woodframe)

ATC-63 Far-field Ground Motions Model: M-SAWS = 5%

Colla

pse

Pro

bab

ility

Median Sa @ Tn (g)

Collapse Analysis (ATC-63 Methodology) Adjusted CMR = SSF x CMR = 2.09 > 1.88 (passed ATC-63

requirement) Unadjusted collapse margin ratio (CMR) is 2.57/1.50 = 1.71 Spectral Shape Factor (SSF) = 1.22

Collapse fragility curve Incremental Dynamic Analysis

Page 25: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

25

Simplified direct displacement design (DDD) Optimize distribution of story stiffness (avoid week story)

Focus on “performance” (i.e. control the drifts)

NLTHA not needed (optional)

Can consider multiple performance requirements

DDD procedure

A viable design method for tall woodframe buildings

Confirmed by NLTHA and full-scale shake table test

The collapse margin ratio of the Capstone Building passed the ATC-63 requirement

Next Step: 1) Include rotation/torsional effects 2) Modified for retrofitting purpose (pre-1970s buildings)

Summary

Page 26: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

26

Thank you

Contact Information:Weichiang [email protected]

Page 27: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

27

Shear Wall Model

M-CASHEW model (Matlab)

11.9mm (15/32”) OSB, 2x6 studs

10d common nails (3.76mm dia.), nail spacing

12.7mm (½”) Gypsum wallboard

31.75mm long #6 drywall screws 406mm (16”) o.c.

u

Fb()

Displacement,

Force, Fb( )

r2Kor1Ko

Ko

Fo

Fu

Design Variable

Page 28: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

28

Capacity Spectrum Approach

Step 8: Design base shear coefficient

2

12 2

1.88 1.51.65

1.71min

9.81 1.88 0.9

1.70.

0.9

4

1

14 247

8

eff

NE XS

NE X

c

C S

B

C SgC

B

eff

C

c

Design spectrum at 5% damping

Sd, Δ

Sa,

Ft/Weff

TS

T

L

Design spectrum (demand) adjusted for damping and target NE probability of drift limit

Capacity spectrum

Keff

Level 3 (MCE)

Page 29: WeiChiang Pang, Clemson University David Rosowsky, Rensselaer Polytechnic Institute John van de Lindt, University of Alabama Shiling Pei, South Dakota.

29

Step 7: Damping reduction factor 4

5.6 ln(10 ).71

01

eff

B

ASCE/SEI- 41

int 26%5% 21%hysteff

Damping

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ks/K

o

hyst

Hysteretic Damping Model

(FPI) Standard S34

(FPI) Midply M47-01

(FPI) Midply M46-01(CUREE) Task 1.4.4 12A

(APA) T2003-22 Wall 7

(APA) T2004-14 Wall 8dcom

0.32exp( 1.38 )hyst s ok k

0.21

Ks/Ko

Effective damping = Intrinsic + Hysteretic damping