rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear...

20
Unit 1 The Living World AP Exam Review Predator Prey 1) Define Predator. An organism that preys on others. 2) Define Prey. An animal that is hunted and killed for food. 3) Describe the trends from observations of the figure to the left: If the number of prey animals increases, there is more food available for the predators and hence they are able to raise more offspring. This, in turn, will cause the number of predators to rise after a short time lag. Symbioses 4) Define Symbiosis. 5) Fill in the chart below on the different types of symbiosis. Symbiosis Type Species 1 Interaction (Beneficial, Harmful, or Neutral) Species 2 Interaction (Beneficial, Harmful, or Neutral) Give a Real World Example Mutualism Beneficial Beneficial Clownfish and sea anemone Coral and zooxanthellae Commensalism Beneficial Neutral Bird nesting in tree Parasitism Beneficial Harmful Tapeworm and Human Competition and Resource Partitioning 6) What is competition? Sharing a limited environmental resource

Transcript of rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear...

Page 1: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

Unit 1 The Living World AP Exam Review

Predator Prey

1) Define Predator. An organism that preys on others.

2) Define Prey. An animal that is hunted and killed for food.

3) Describe the trends from observations of the figure to the left:

If the number of prey animals increases, there is more food available for the predators and hence they are able to raise more offspring. This, in turn, will cause the number of predators to rise after a short time lag.

Symbioses

4) Define Symbiosis.

5) Fill in the chart below on the different types of symbiosis.

Symbiosis Type Species 1 Interaction (Beneficial, Harmful, or

Neutral)

Species 2 Interaction

(Beneficial, Harmful, or Neutral)

Give a Real World Example

Mutualism Beneficial Beneficial Clownfish and sea anemone

Coral and zooxanthellae

Commensalism Beneficial Neutral Bird nesting in tree

Parasitism Beneficial Harmful Tapeworm and Human

Competition and Resource Partitioning

6) What is competition? Sharing a limited environmental resource

7) How does competition sometimes lead to resource partitioning? When organisms are competing for a common limited resource they evolve to coexist by dividing a niche.

8) Compare interspecific to intraspecific competition. Inter-between two different species in the same area/Intra-between two of the same species in the same area

Terrestrial Biomes

9) Define the term biodiversity. The number of species in an area.

Page 2: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

10) Define the term biome A certain area of Earth which has a consistent climate, flora, and fauna.

11) Sketch and/or label the following on the map of the world below:

a. the equator (on map 0 Degrees Latitude)b. the tropic of Cancer and the tropic of Capricorn (23.5 N and 23.5 S Latitude)c. the Mid-Atlantic Ridge(STARS)d. the location of suppressed upwelling characteristic of the occurrence of El Niño (Yellow Star)e. the location of China(Red Star), India(Blue Star), Ethiopia(Green Star), Brazil(Orange Star), Bangladesh(Black dot), and

Fremont(Purple dot)

12) Fill in the table below about the different terrestrial biomes of the world.

Type of Biome Typical Location Typical Climate Characteristic adaptations for survival

Tropical Rain Forest

20N-20S Latitude

(Central and S. America/ Southeast Asia/ N. Australia)

Avg Temp: 20-30C

Precipitation: 250-450 cm

Plants – Lush Vegetation, cocoa, coffee, bamboo, strangler figsAnimals – Ape, monkey, sloths, toucan

Temperate Deciduous Forest

Eastern US, Japan, Chile, China, Europe, Eastern Australia

Avg Temp: 5 to 20C

Precip: 50-225 cm

Plants – Oak, maple, beech, hickory, some pineAnimals – Toad, squirrel, chipmunk

Taiga (Boreal) Forest50N-60N in Europe, Russia, and N America

Avg Temp:-5 to 10C

Precip: 25-200 cm

Plants – Coniferous trees; pine, spruce, fir. Some deciduousAnimals – Moose, beaver, bear, wolf

Tropical Grasslands (Savanna)

Central America, S. Asia, Coastal S. America, Sub-saharan Africa, MW Australia

Avg Temp: 20 to 30C

Precip: 50-275 cm

Plants – Dense stands of shrubs and trees, grassesAnimals – Scorpion, giraffe, rhinos

Temperate Grassland (Prairie)

N. America, S. America, Central Asia, E. Europe

Avg. Temp: -5 to 20C

Precip: 0-50 cm

Plants – Grasses, non woody flowering plantsAnimals – Bison, zebra, rhino, kangaroo

Tundra Northernmost Northern Avg. Temp: -10 to - Plants – Woody shrubs, mosses, lichens

Page 3: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

(Cold Grassland) Hemisphere, Antarctica5C

Precip: 0-100 cm

Animals –Hare, fox, caribou, polar bear

Desert

30N-30S, Mojave Desert(US), Sahara(Africa), Arabian(Middle East), Great Victoria(Australia)

Avg Temp: 18 to 31

Precip: 0-100 cm

Plants – Cacti, succulentsAnimals – Camel, rock hyrax

13) For each of the following biomes, identify a specific country in which each biome occurs in relative abundance:

Taiga(N. America) Desert(US, Africa) Tropical rainforest(S. America) Temperate grassland(N. America, Europe) Tropical grassland(Africa, Asia) Coral reef(Central America, Australia, SE Asia) Temperate deciduous forest(Eastern US) Tundra(Russia, N. America)

Aquatic Biomes

14) Fill in the table below about the different aquatic biomes of the world.

Type of Biome Typical Location Typical Climate Characteristic adaptations for survival

Coral Reef

Near equator, Australia, Caribbean Sea, Indonesia

Temp:23-29C Plants – Algae, ZooxanthellaeAnimals – Coral, reef fish, sharks, rays, mollusks

Open OceanWater column beyond continental shelf

Temp: Varies depending on currents and sunlight

Plants – PhytoplanktonAnimals – Sharks, dolphins, whales

Kelp ForestPacific Northwest US

Temp:5-20C Plants – Kelp Animals – Urchins, Sea stars, otters, whales

Estuary/WetlandCoastal where freshwater and saltwater mix

Temp: Varies Plants – Mangrove trees, algae, cordgrassAnimals – Sharks, crocodiles, herons, crabs, fish

Biogeochemical Cycles: Carbon Cycle, Phosphorus, Nitrogen and Water Cycles

15) Complete the following table for these biogeochemical cycles:

Trait Carbon Nitrogen Phosphorus Water

Importance to lifeNeeded for photosynthesis

Essential for plant lifeEssential nutrient for plants and animals (ATP, DNA, RNA)

Essential to life, moves nutrients through ecosystem

Page 4: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

Largest reservoir Ocean Atmosphere Sedimentary Rock Oceans

Methods of transport

Photosynthesis, respiration, sedimentation, burial, extraction, and combustion

Nitrogen fixation, Nitrification, Assimilation, Ammonification, Denitrification

Moves through water and land

Evaporation, condensation, precipitation

Cycle duration (long/short) Both

Short

Short(Plants and Animals)

Long(Soil and Ocean)

Short

Detailed Nitrogen Cycle

16) Identify the characteristic process associated with each of the following.

Nitrification: Convert ammonia into nitrite and then nitrate

Denitrification: Nitrate into nitrogen gas(N2)

Assimilation: Producers incorporate elements into their tissues

Nitrogen Fixation: Converts nitrogen gas(N2) into forms producers can use

Ammonification: Bacteria and fungus breakdown organic nitrogen from dead bodies and waste and convert it into inorganic ammonium

Food Chains

17) Identify three examples of biotic components of an ecosystem and three examples of abiotic components of an ecosystem.

(1) Plants (1) Soil

Biotic: (2) Animals Abiotic: (2) Water

(3) Bacteria (3) Temperature

18) Diagram a simple food chain in the space below. Label the trophic levels and illustrate the Rule of 10 with each trophic level. Start with 1,000,000 kCal in the primary producer level.

Grass -----> Rabbit ------> Fox

1,000,000 kcal 100,000 kcal 10,000 kcal

Primary Producer Primary Consumer Secondary Consumer

19) What happens when a predator is removed from the food chain or web?

1st and 2nd Law of Thermodynamics

20) Define the First Law of Thermodynamics Energy can neither be created or destroyed instead it may be transferred from one form to another.

Page 5: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

-Example Humans converting energy from food into activity

21) Define the Second Law of Thermodynamics When energy is transformed, the quantity remains the same, but its ability to do work diminishes

-Example Moving up the food chain most of the energy is lost to the environment as heat

Gross Primary Productivity and Net Primary Productivity

23) Define GPP Gross Primary Productivity: total amount of solar energy that producers in an ecosystem capture via photosynthesis

24) Define NPP Net Primary Productivity: the energy captured in an ecosystem minus the energy producers respire

25) What biomes have high NPP? Low NPP? Why?

High NPP: Rainforest and Swamps

Temperatures are warm, solar energy and water abundant

Low NPP: Desert and Open Ocean

The volume of the open ocean compared to the amount of phytoplankton is massive

Deserts have little precipitation resulting in a low number of primary producers

GPP and NPP Math

26) Perform the following calculation. Show all of your work. If the grasses on a 100-hectare area of grassland grow at an average rate of 1 cm/day, the average volume of grass that is added to the grassland each day is ____________ m3. If the density of the grasses that grow in the grassland averages 400 kg/m3, the net primary productivity is approximately _____________ g/day or _____________ g/year. 1 hectare = 10,000 m2

Show work:

First, convert 100 ha to m2 using 1 ha=10000 m2

1,000,000 m2

Second, convert 1 cm/day to m/day using 100 cm=1 m

.01 m

Third, multiply the two (1,000,000 m2 x .01 m)

10,000 m3

Fourth, Density=Mass X Volume, D= 400 kg/m3

Must convert to grams/m3

1000 g= 1 kg

D=400,000 g/m3

so….V=10,000 m3

M= D/V

(400,000 g/m3 / 10,000 m3)= 40 grams

NPP= 40 g/day

365 days=1 year

Page 6: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

NPP= 40 g/day x 365 days= 14,600 g/yr

Sample FRQs

27) Biogeochemical cycles describe the movement of certain elements (typically bound with other elements in compounds) through Earth’s atmosphere, hydrosphere, biosphere, and lithosphere. These elements and their compounds are necessary components of all life, and because they cycle, they can be used repeatedly by new generations of organisms. Each biogeochemical cycle has different pathways with various reservoirs (sources and sinks) where elements may reside for days or millions of years.

(a) The atmosphere is one important carbon reservoir.

(i) Describe a biological process by which carbon is removed from the atmosphere and converted to organic molecules.

Photosynthesis: the process by which plants/autotrophs take in carbon dioxide from the atmosphere and convert it into food/glucose/sugar/complex carbohydrates; plants/autotrophs fix carbon into food/glucose/sugar/complex carbohydrates.

(ii) Describe a biological process by which carbon is converted from organic molecules to a gas and returned to the atmosphere.

• Respiration breaks down food/glucose/sugar/complex carbohydrates and releases CO2 into the atmosphere

• Animals digest food and produce gases such as methane that can be emitted either through belching or flatulence

• Decomposition of organic material by bacteria or fungi converts organic carbon into gases such as methane

(b) Oceans and terrestrial systems are also important carbon reservoirs.

(i) Explain how atmospheric carbon is incorporated into two oceanic sinks.

• Carbon (CO2) can be taken up by organisms like phytoplankton for photosynthesis

• Carbon can be taken up by marine organisms and used for shells, skeletons, coral, etc.

• Biological pump (organisms in the upper ocean sink to the bottom of the ocean)

• Atmospheric CO2 can dissolve directly into ocean water OR atmospheric CO2 can dissolve into precipitation and ultimately reach the ocean

• Carbon can react with other elements/compounds and form carbonates/limestone/sedimentary rocks (just “rocks” is too vague to earn a point)

(ii) Identify one terrestrial sink, other than fossil fuels, that stores carbon for thousands to millions of years.

Old growth forests/trees that live for thousands of years (just “forests” does not earn credit)

• Trapped/incorporated into ice caps/glaciers

• Limestone or sedimentary rocks

• Incorporation into soil

• Freshwater wetlands/bogs

• Peat formation/burial of plant material under anaerobic conditions

• Dissolved in aquifers

(c) The burning of fossil fuels has been shown to increase the concentration of carbon in the atmosphere. Discuss TWO other human activities that increase the concentration of carbon in the atmosphere.

• Deforestation—cutting down trees reduces the reservoirs for carbon OR cutting down trees can result in carbon being released back into the atmosphere through the process of decay/decomposition

• Biomass burning releases carbon (CO, CO2, carbon particulates) • Trash/waste incineration can release carbon (CO2, CO, carbon particulates)

Page 7: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

• Slash and burn agricultural practices—burning organic matter releases carbon (CO2, CO, carbon particulates)

• Deep plowing or strip mining disrupts soil and releases carbon (CO2)

• Humans make landfills that can produce carbon-containing carbon-based gases (mainly methane)

• Raising cows and/or other ruminant animals releases carbon-containing gases (methane)

• Manufacture and use of CFCs/HCFCs/other carbon-containing compounds releases carbon

• Destruction of wetlands (releases CO2/removes sink for CO2)

• Production of cement releases CO2

(d) Identify an environmental problem that results from elevated atmospheric carbon concentrations. Discuss one consequence of the problem you identified.

Global climate change/global warming/increased global temperatures

• some species of plants and/or animals will not be able to survive temperature changes

• climate zones will shift so some species may not be able to adapt

Sea Level Rise

• sea level rise which will flood habitats

Ice caps/glaciers melting

• coastal habitats will be flooded

Ocean acidification

• flooding and habitat loss

• shells of marine organisms may dissolve

• lower pH may be below the tolerance level of some species Reduction in air quality due to (for example) increased CO in the atmosphere

• hazardous to animals breathing it in

(e) Phosphorus is another element important to all organisms.

i) Describe one major way in which the phosphorus cycle differs from the carbon cycle.

• Phosphorus cycle does not typically have a gas/atmospheric phase

• It is more difficult for living organisms to access phosphorus since it has to be weathered from rocks and minerals (phosphorus cycle is much “slower” than the carbon cycle; phosphorus has fewer sinks than carbon)

ii) Identify one reason that phosphorus is necessary for organisms.

• Phosphorus is a component of nucleotides/ATP in cells

• It is necessary for the formation of DNA and RNA

• Phospholipids are a major component of all cell membranes

• Phosphorus is found in/gives strength to the bones and/or enamel of teeth in mammals

28) After reading the following excerpt from an article about the interrelationships among organisms in an oak forest, answer parts (a), (b), and (c), which follow.

Chain Reactions Linking Acorns to Gypsy Moth Outbreaks and Lyme Disease Risk Oak trees (Quercus spp.) produce large autumnal acorn crops every two to five years, and produce few or no acorns during intervening years. Acorns are a critical food for white-

Page 8: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

footed mice (Peromyscus leucopus). Mice are important predators of the pupal stage of the gypsy moth (Lymantria dispar). This introduced insect periodically undergoes outbreaks that defoliate millions of hectares of oak forests, decreasing tree growth, survival, and acorn crop production. An abundance of acorns provides food for white-tailed deer (Odocoileus virginianus). Mice and deer are the primary hosts of the black-legged tick (Ixodes scapularis), which carries Lyme disease.

(a) In the space provided below, diagram a food web based on the interrelationships of the organisms identified in the excerpt.

(b) Design a controlled experiment that tests the relationship between acorn production and gypsy moth population. Include the hypothesis that the experiment tests.

Page 9: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

(c) Briefly describe a strategy that uses integrated pest management for the control of the black-legged tick population.

29) Wetlands were once considered to be wastelands. Over 50 percent of the United States original wetlands have been destroyed.

(a) Describe TWO characteristics that are used by scientists to define an area as a wetland.

• Soil covered/saturated/submerged/inundated/flooded with water (for all or part of the year) OR shallow/standing water with emergent vegetation.

• Plants/vegetation have adaptations that allow them to live under these conditions (are water tolerant).

• Characteristic (hydric) soils

(b) Wetlands are highly productive ecosystems with complex food webs.

(i) Complete the diagram of the wetland food web to the right by drawing arrows that show the direction of energy flow.

Page 10: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

(ii) Explain why it takes many hectares of wetland to support a pair of eagles.

• To support a pair of eagles, there must be a large amount of biomass at lower trophic levels.

• Less energy is available at each successive trophic level, because as energy moves up the food chain, much of it is: o lost as heat (10 percent rule) or lost as metabolic work; or, o transformed into a less usable form/becomes less organized (second law of thermodynamics).

• Some biomass is not digestible at the next trophic level (e.g., cellulose, chitin). Note: Students may use a trophic pyramid diagram, but it must be accompanied by an explanation in order to earn credit.

(c) Describe TWO economic benefits (other than those related to water quality) that wetlands provide.

Page 11: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

(d) Describe one specific human activity that degrades wetlands.

Modified by A. Willis from David Hong’s AP Environmental Science Review Packets (Diamond Bar HS). FRQ’s are College Board Released.

Unit 1 The Living World Review Videos

Page 12: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

Mr. Andersen, Bozeman Biology

007 - Ecosystem Ecology 008 - Energy Flow in Ecosystems 009 - Ecosystem Diversity010 - Natural Ecosystem Change 011 - Biogeochemical Cycles

Amoeba Sisters

Carbon and Nitrogen Cycle: https://www.youtube.com/watch?v=NHqEthRCqQ4

Ecological Relationships: https://www.youtube.com/watch?v=rNjPI84sApQ

Crash Course

Population Ecology - Crash Course Biology #2: https://www.youtube.com/watch?v=RBOsqmBQBQk&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=2

Community Ecology: Feel the Love Crash Course Ecology #4 https://www.youtube.com/watch?v=GxE1SSqbSn4&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=4

Community Ecology II: Predators Crash Course Ecology #5: https://www.youtube.com/watch?v=mFDiiSqGB7M&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=5

Ecological Succession: Change is Good Crash Course Ecology #6: https://www.youtube.com/watch?v=jZKIHe2LDP8&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=6

Ecosystem Ecology: Links in the Chain Crash Course Ecology #7: https://www.youtube.com/watch?v=v6ubvEJ3KGM&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=7

The Hydrologic and Carbon Cycles: Always Recycle Crash Course Ecology #8: https://www.youtube.com/watch?v=2D7hZpIYlCA&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=8

Nitrogen and Phosphorus Cycles: Always Recycle Part Two Crash Course Ecology #9: https://www.youtube.com/watch?v=leHy-Y_8nRs&list=PL8dPuuaLjXtNdTKZkV_GiIYXpV9w4WxbX&index=9

HHMI BioInteractive

Some Animals are More Equal Than Others: Trophic Cascades https://www.youtube.com/watch?v=hRGg5it5FMI

Khan Academy

Ecology Introduction: https://www.youtube.com/watch?v=OfV3VNgjpvw&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP

Ecosystems and Biomes: https://www.youtube.com/watch?v=A495e31cDdE&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=2

Flow of Energy and Matter Through Ecosystems: https://www.youtube.com/watch?v=TitrRpMUt0I&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=3

Interactions Between Populations: https://www.youtube.com/watch?v=q2zdiLn3gSE&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=4

The Water Cycle: https://www.youtube.com/watch?v=jFjI6y46QRk&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=5

Organism Life History and Fecundity: https://www.youtube.com/watch?v=mAdUjImDx58&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=6

Page 13: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

Nitrogen Cycle: https://www.youtube.com/watch?v=DsCMYyQ0NWU&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=7

Biogeochemical Cycles: https://www.youtube.com/watch?v=ccWUDlKC3dE&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=8

Exponential and Logistic Growth in Populations: https://www.youtube.com/watch?v=KyAKEisg2PQ&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=9

Predator Prey Cycle: https://www.youtube.com/watch?v=NYq2078_xqc&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=10

Ecological Succession: https://www.youtube.com/watch?v=d7xbyNSxxrI&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=11

Population Regulation: https://www.youtube.com/watch?v=6IS_M6CX7FE&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=12

Phosphorus Cycle: https://www.youtube.com/watch?v=tm2LG5ScT1g&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=13

Carbon Cycle: https://www.youtube.com/watch?v=_dYkByQ9Kmg&list=PLbjyLFA2XFZyvLJTz-oWEUURQtwnf32eP&index=14

Barron’s Review Chapters, 7th Edition

Chapter 4: Ecosystems (Pg 91)

Chapter 5: Natural Biogeochemical Cycles (Pg 145)

Unit 1 The Living World Vocabulary

PCBs: Polychlorinated Biphenyls used in electronics. Chemical products banned in 1979. Polluted groundwater.

Quantitative Data: data that uses numbers

Qualitative Data: data that uses qualities and characteristics to describe

Experimental Design: set up of an experiment

Control: constant variable and unchanged throughout the course of the investigation.

Easter Island: an island owned by Chile where people died because of lack of natural resources

Ecology: study of living organisms in their nonliving world

Biotic factor: living item (ex: bacteria)

Abiotic factor: not living item (ex:

Ecological Hierarchy: species population community ecosystem biome biosphere🡪 🡪 🡪 🡪 🡪Population: a group of individuals of the same species

Community: a group of populations interacting together

Ecosystem: a group of communities interacting together

Biosphere: another name for earth

Natural Selection: survival of the fittest

Chesapeake Bay Watershed: Where the Potomac River dumps into the Atlantic Ocean. Extremely polluted with sediments and nutrients.

Salinity: level of salt in the water

Brackish: medium levels of salinity. Often occurs in wetlands where salt and freshwater mix.

Page 14: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

Potential Energy: The energy stored. PE = mgh

Kinetic Energy: The energy in movement: KE = ½ mv2

1st Law of Thermodynamics: Energy is not created nor destroyed…changes forms

2nd Law of Thermodynamics: No reaction is 100% efficient. Entropy is created after every energy transformation.

Entropy: Disorder and chaos in a system.

Gaia hypothesis: organisms interact with their inorganic surroundings on Earth to form a synergistic self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet

Ecological footprint: a measure of human impact on Earth's ecosystems. It's typically measured in the area of wilderness or amount of natural capital consumed each year.

Carrion: the decaying flesh of dead animals

Phototrophs: organisms that use light to perform photosynthesis. Often plants and phytoplankton.

Chemotrophs: organisms that use chemicals to perform chemosynthesis. Often bacteria in deep sea vents.

Heterotrophs: organisms that consume to obtain energy. Often herbivores and carnivores.

Primary Consumer: first level heterotroph, eat primary producers

Secondary Consumer: organism that eats primary consumer

Tertiary Consumer: organism that eats secondary consumer

Saprotrophs: organism that eats dead organic materials (fungi and bacteria)

Food Chain: a series of who eats whom with one pp, one pc, one sc, one tc

Food Web: a diagram of who eats whom for all organisms

Gross Primary Productivity: the rate of photosynthesis taking place in an area

Net Primary Productivity: The biomass left over in a phototroph after photosynthesis and respiration takes place.

Nitrogen Fixation: Taking nitrogen in air (N2) and changing to nitrite (NO2) or ammonia (NH3)

Nitrification: Take nitrite and turning it into nitrate NO3

Assimilation: Organisms use nitrate and ammonium to make DNA and amino acids.

Ammonification: Taking NH3 and turning it into NH4.

Denitrification: Taking nitrate and ammonium and turning it back into nitrogen (N2) in the air.

Sink: a storage place of an element

Source: a process that releases an element.

Primary Succession: community change that occurs with new land formation: lichen moss small shrubs small 🡪 🡪 🡪trees large trees climax community🡪 🡪Secondary Succession: community change that occurs with land already formed.

Bottleneck Effect: cut down of genetic diversity due to loss of individuals in a population.

Non-native species: a species that is not known historically in an area. Ex: cane toads in Australia

Page 15: rhsapesclass.weebly.comrhsapesclass.weebly.com/uploads/2/5/3/5/25351626/u… · Web viewNear equator, Australia, Caribbean Sea, Indonesia Temp:23-29C Plants – Algae, Zooxanthellae

Species diversity: a count of how many species are in an area.

Ecotone: a transitional zone between two communities. Ex: intertidal zone.

Niche: an organism’s job in a community.

Hybrid: the offspring of two different species.

Lichen: a symbiotic relationship of a fungus and an algae

Germination: sprouting of a seed

Mutualism: a symbiosis where two species benefit from the relationship. Ex: oxpecker and rhino

Commensalism: a symbiosis where one species benefits and the other is neutral in the relationship. Ex: cattle egret and cow

Parasitism: a symbiosis where one species benefits and the other is harmed in the relationship. Ex: tapeworm and human

Competitive Exclusion Principle: species with the same niche in the same area cannot coexist

Keystone Species: often a dominant predator whose removal allows a prey population to explode and often decreases overall diversity. Ex: sea otter

Predation: the preying of one animal on others.

Mimicry: the close external resemblance of an animal or plant (or part of one) to another animal, plant, or inanimate object

Interspecific Competition: competition between two different species.

Intraspecific Competition: competition of the same species.

Aerobic: using oxygen

Anaerobic: using no oxygen