Wave function of the Proton

69
Wave function of the Proton Dale Roberts, Waseem Kamleh, Derek Leinweber Introduction Interpolating Field u Symmetrisation Landau Gauge Coulomb Gauge ~ B Field ~ B Symmetrisation Landau Gauge Coulomb Gauge Summary Wave function of the Proton Dale Roberts, Waseem Kamleh, Derek Leinweber CSSM and University of Adelaide Tony’s 60-fest, February, 2010

Transcript of Wave function of the Proton

Page 1: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Wave function of the Proton

Dale Roberts, Waseem Kamleh, Derek Leinweber

CSSM and University of Adelaide

Tony’s 60-fest, February, 2010

Page 2: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Introduction

I We explore the structure of the nucleon by examiningthe wave function with and without the presence of abackground magnetic field.

I The standard creation and annhilation operators for theproton are given by

χ(~x) = εabc ua(~x)(db(~x)Cγ5uTc (~x)),

χ(~x) = εabc(uTa (~x)Cγ5db(~x))uc(~x).

I C = γ2γ4 is the charge conjugation matrix.

I In order to create the wave function of the proton we fixthe position of the u quarks and measure the d quarkprobability distribution.

Page 3: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Introduction

I We explore the structure of the nucleon by examiningthe wave function with and without the presence of abackground magnetic field.

I The standard creation and annhilation operators for theproton are given by

χ(~x) = εabc ua(~x)(db(~x)Cγ5uTc (~x)),

χ(~x) = εabc(uTa (~x)Cγ5db(~x))uc(~x).

I C = γ2γ4 is the charge conjugation matrix.

I In order to create the wave function of the proton we fixthe position of the u quarks and measure the d quarkprobability distribution.

Page 4: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Introduction

I We explore the structure of the nucleon by examiningthe wave function with and without the presence of abackground magnetic field.

I The standard creation and annhilation operators for theproton are given by

χ(~x) = εabc ua(~x)(db(~x)Cγ5uTc (~x)),

χ(~x) = εabc(uTa (~x)Cγ5db(~x))uc(~x).

I C = γ2γ4 is the charge conjugation matrix.

I In order to create the wave function of the proton we fixthe position of the u quarks and measure the d quarkprobability distribution.

Page 5: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Introduction

I We explore the structure of the nucleon by examiningthe wave function with and without the presence of abackground magnetic field.

I The standard creation and annhilation operators for theproton are given by

χ(~x) = εabc ua(~x)(db(~x)Cγ5uTc (~x)),

χ(~x) = εabc(uTa (~x)Cγ5db(~x))uc(~x).

I C = γ2γ4 is the charge conjugation matrix.

I In order to create the wave function of the proton we fixthe position of the u quarks and measure the d quarkprobability distribution.

Page 6: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Separation

I Relative to a central spatial point ~x , the vectors ~d1 and~d2 describe the position of the two u quarksrespectively, and ~y describes the position of the dquark. So we modify our annhilation operator to be

χ(~x , ~d1, ~d2, ~y) = εabc(uTa (~x+~d1)Cγ5db(~x+~y))uc(~x+~d2).

I The u quarks are separated along the x–axis,

~d1 = (d1, 0, 0), ~d2 = (d2, 0, 0).

I For even separations, d1 = −d2, and for oddseparations, d1 + 1 = −d2.

Page 7: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Separation

I Relative to a central spatial point ~x , the vectors ~d1 and~d2 describe the position of the two u quarksrespectively, and ~y describes the position of the dquark. So we modify our annhilation operator to be

χ(~x , ~d1, ~d2, ~y) = εabc(uTa (~x+~d1)Cγ5db(~x+~y))uc(~x+~d2).

I The u quarks are separated along the x–axis,

~d1 = (d1, 0, 0), ~d2 = (d2, 0, 0).

I For even separations, d1 = −d2, and for oddseparations, d1 + 1 = −d2.

Page 8: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Separation

I Relative to a central spatial point ~x , the vectors ~d1 and~d2 describe the position of the two u quarksrespectively, and ~y describes the position of the dquark. So we modify our annhilation operator to be

χ(~x , ~d1, ~d2, ~y) = εabc(uTa (~x+~d1)Cγ5db(~x+~y))uc(~x+~d2).

I The u quarks are separated along the x–axis,

~d1 = (d1, 0, 0), ~d2 = (d2, 0, 0).

I For even separations, d1 = −d2, and for oddseparations, d1 + 1 = −d2.

Page 9: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge fixing

I The wave function of the proton on the lattice is thendefined to be proportional to the two-point correlationfunction at zero momentum in position space,

G2γρ(~x , ~d1, ~d2, ~y , t) = 〈Ω|Tχ(~x , ~d1, ~d2, ~y , t)χ(0)|Ω〉.

I We use a volume (wall) source.

I The two point function we have constructed is nolonger gauge invariant.

I The simplest solution is to gauge fix. We study boththe Landau and Coulomb gauges.

Page 10: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge fixing

I The wave function of the proton on the lattice is thendefined to be proportional to the two-point correlationfunction at zero momentum in position space,

G2γρ(~x , ~d1, ~d2, ~y , t) = 〈Ω|Tχ(~x , ~d1, ~d2, ~y , t)χ(0)|Ω〉.

I We use a volume (wall) source.

I The two point function we have constructed is nolonger gauge invariant.

I The simplest solution is to gauge fix. We study boththe Landau and Coulomb gauges.

Page 11: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge fixing

I The wave function of the proton on the lattice is thendefined to be proportional to the two-point correlationfunction at zero momentum in position space,

G2γρ(~x , ~d1, ~d2, ~y , t) = 〈Ω|Tχ(~x , ~d1, ~d2, ~y , t)χ(0)|Ω〉.

I We use a volume (wall) source.

I The two point function we have constructed is nolonger gauge invariant.

I The simplest solution is to gauge fix. We study boththe Landau and Coulomb gauges.

Page 12: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge fixing

I The wave function of the proton on the lattice is thendefined to be proportional to the two-point correlationfunction at zero momentum in position space,

G2γρ(~x , ~d1, ~d2, ~y , t) = 〈Ω|Tχ(~x , ~d1, ~d2, ~y , t)χ(0)|Ω〉.

I We use a volume (wall) source.

I The two point function we have constructed is nolonger gauge invariant.

I The simplest solution is to gauge fix. We study boththe Landau and Coulomb gauges.

Page 13: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau Gauge

I Landau gauge, surface plot, D=0

Page 14: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau Gauge

I Landau gauge, surface plot, D=7

Page 15: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Symmetrisation

I The density is concentrated around the u quark which ispart of the scalar diquark term.

I The wave function should be symmetric around thecentre of mass ~x .

I The two u quarks should be indistinguishable - but wehave explicitly given them different positions.

I Solution: we symmetrise explicitly over d1 and d2,

χ(~x ,~d1, ~d2, ~y) =

εabc[(uT

a (~x + ~d1)Cγ5db(~x + ~y))uc(~x + ~d2)

+(uTa (~x + ~d2)Cγ5db(~x + ~y))uc(~x + ~d1)

].

Page 16: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Symmetrisation

I The density is concentrated around the u quark which ispart of the scalar diquark term.

I The wave function should be symmetric around thecentre of mass ~x .

I The two u quarks should be indistinguishable - but wehave explicitly given them different positions.

I Solution: we symmetrise explicitly over d1 and d2,

χ(~x ,~d1, ~d2, ~y) =

εabc[(uT

a (~x + ~d1)Cγ5db(~x + ~y))uc(~x + ~d2)

+(uTa (~x + ~d2)Cγ5db(~x + ~y))uc(~x + ~d1)

].

Page 17: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Symmetrisation

I The density is concentrated around the u quark which ispart of the scalar diquark term.

I The wave function should be symmetric around thecentre of mass ~x .

I The two u quarks should be indistinguishable - but wehave explicitly given them different positions.

I Solution: we symmetrise explicitly over d1 and d2,

χ(~x ,~d1, ~d2, ~y) =

εabc[(uT

a (~x + ~d1)Cγ5db(~x + ~y))uc(~x + ~d2)

+(uTa (~x + ~d2)Cγ5db(~x + ~y))uc(~x + ~d1)

].

Page 18: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

u Quark Symmetrisation

I The density is concentrated around the u quark which ispart of the scalar diquark term.

I The wave function should be symmetric around thecentre of mass ~x .

I The two u quarks should be indistinguishable - but wehave explicitly given them different positions.

I Solution: we symmetrise explicitly over d1 and d2,

χ(~x ,~d1, ~d2, ~y) =

εabc[(uT

a (~x + ~d1)Cγ5db(~x + ~y))uc(~x + ~d2)

+(uTa (~x + ~d2)Cγ5db(~x + ~y))uc(~x + ~d1)

].

Page 19: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge wave function

I Volume source means no preferred starting position,allows us to average our results over all ~x .

I See animation.

I “Peanut” shape.

I Diquark clustering clearly present.

Page 20: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge wave function

I Volume source means no preferred starting position,allows us to average our results over all ~x .

I See animation.

I “Peanut” shape.

I Diquark clustering clearly present.

Page 21: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge wave function

I Volume source means no preferred starting position,allows us to average our results over all ~x .

I See animation.

I “Peanut” shape.

I Diquark clustering clearly present.

Page 22: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge wave function

I Volume source means no preferred starting position,allows us to average our results over all ~x .

I See animation.

I “Peanut” shape.

I Diquark clustering clearly present.

Page 23: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge wave function

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering clearly absent.

I Different gauge =⇒ different shape.

Page 24: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge wave function

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering clearly absent.

I Different gauge =⇒ different shape.

Page 25: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge wave function

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering clearly absent.

I Different gauge =⇒ different shape.

Page 26: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge wave function

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering clearly absent.

I Different gauge =⇒ different shape.

Page 27: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background ~B Field

I We also study the response of the proton to thepresence of a constant background magnetic field.

I A constant background field in the z direction (withcontinuum field strength ω) is implemented as a U(1)field, with

U1(x , y) = exp(−iωy),

U2(x , y) = 1,

except for the boundary,

U2(x , ny ) = exp(+iωnyx).

Page 28: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background ~B Field

I We also study the response of the proton to thepresence of a constant background magnetic field.

I A constant background field in the z direction (withcontinuum field strength ω) is implemented as a U(1)field, with

U1(x , y) = exp(−iωy),

U2(x , y) = 1,

except for the boundary,

U2(x , ny ) = exp(+iωnyx).

Page 29: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background ~B Field

I The plaquettes in the x–y plane are then constant,

P12(x , y) = U1(x , y)U2(x + 1, y)U†1(x , y + 1)U†2(x , y)

= e−iωy .1.e+iω(y+1).1 = exp(+iω).

I The corner of the lattice requires special treatment,

P12(nx , ny ) = U1(nx , ny )U2(1, ny )U†1(nx , 1)U†2(nx , ny )

= e−iωny .e+iωny .e+iω.e−iωnxny

I A quantisation condition on the field strength is induced

exp(+iωnxny ) = 1 =⇒ ω =2πk

nxny.

Page 30: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background ~B Field

I The plaquettes in the x–y plane are then constant,

P12(x , y) = U1(x , y)U2(x + 1, y)U†1(x , y + 1)U†2(x , y)

= e−iωy .1.e+iω(y+1).1 = exp(+iω).

I The corner of the lattice requires special treatment,

P12(nx , ny ) = U1(nx , ny )U2(1, ny )U†1(nx , 1)U†2(nx , ny )

= e−iωny .e+iωny .e+iω.e−iωnxny

I A quantisation condition on the field strength is induced

exp(+iωnxny ) = 1 =⇒ ω =2πk

nxny.

Page 31: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background ~B Field

I The plaquettes in the x–y plane are then constant,

P12(x , y) = U1(x , y)U2(x + 1, y)U†1(x , y + 1)U†2(x , y)

= e−iωy .1.e+iω(y+1).1 = exp(+iω).

I The corner of the lattice requires special treatment,

P12(nx , ny ) = U1(nx , ny )U2(1, ny )U†1(nx , 1)U†2(nx , ny )

= e−iωny .e+iωny .e+iω.e−iωnxny

I A quantisation condition on the field strength is induced

exp(+iωnxny ) = 1 =⇒ ω =2πk

nxny.

Page 32: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background Field

I Background field, x–y plane.

Page 33: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I There is clearly an x–y asymmetry present.

I There should be:

1. Our field description is manifestly asymmetric.2. The quark propagator contains the (lattice version of

the) inverse of ∂µ + Aµ.3. We are looking at a gauge dependent quantity.

Page 34: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I There is clearly an x–y asymmetry present.I There should be:

1. Our field description is manifestly asymmetric.2. The quark propagator contains the (lattice version of

the) inverse of ∂µ + Aµ.3. We are looking at a gauge dependent quantity.

Page 35: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I There is clearly an x–y asymmetry present.I There should be:

1. Our field description is manifestly asymmetric.

2. The quark propagator contains the (lattice version ofthe) inverse of ∂µ + Aµ.

3. We are looking at a gauge dependent quantity.

Page 36: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I There is clearly an x–y asymmetry present.I There should be:

1. Our field description is manifestly asymmetric.2. The quark propagator contains the (lattice version of

the) inverse of ∂µ + Aµ.

3. We are looking at a gauge dependent quantity.

Page 37: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I There is clearly an x–y asymmetry present.I There should be:

1. Our field description is manifestly asymmetric.2. The quark propagator contains the (lattice version of

the) inverse of ∂µ + Aµ.3. We are looking at a gauge dependent quantity.

Page 38: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I In the continuum it is possible to construct a manifestly(anti-)symmetric background gauge field,

F12 = ∂1A2 − ∂2A1

A2 = ωx

2,A1 = −ω y

2

I Symmetric under the transformation x → −y .

I It is possible on the lattice as well (if nx = ny = n), bysetting

U1(x , y) = exp(−iωy/2),

U2(x , y) = exp(+iωx/2).

I However, the quantisation condition is now ω = 4πkn .

I Smallest non-zero field in a factor of 2n bigger.

I Thats bad...

Page 39: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I In the continuum it is possible to construct a manifestly(anti-)symmetric background gauge field,

F12 = ∂1A2 − ∂2A1

A2 = ωx

2,A1 = −ω y

2

I Symmetric under the transformation x → −y .

I It is possible on the lattice as well (if nx = ny = n), bysetting

U1(x , y) = exp(−iωy/2),

U2(x , y) = exp(+iωx/2).

I However, the quantisation condition is now ω = 4πkn .

I Smallest non-zero field in a factor of 2n bigger.

I Thats bad...

Page 40: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I In the continuum it is possible to construct a manifestly(anti-)symmetric background gauge field,

F12 = ∂1A2 − ∂2A1

A2 = ωx

2,A1 = −ω y

2

I Symmetric under the transformation x → −y .

I It is possible on the lattice as well (if nx = ny = n), bysetting

U1(x , y) = exp(−iωy/2),

U2(x , y) = exp(+iωx/2).

I However, the quantisation condition is now ω = 4πkn .

I Smallest non-zero field in a factor of 2n bigger.

I Thats bad...

Page 41: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I In the continuum it is possible to construct a manifestly(anti-)symmetric background gauge field,

F12 = ∂1A2 − ∂2A1

A2 = ωx

2,A1 = −ω y

2

I Symmetric under the transformation x → −y .

I It is possible on the lattice as well (if nx = ny = n), bysetting

U1(x , y) = exp(−iωy/2),

U2(x , y) = exp(+iωx/2).

I However, the quantisation condition is now ω = 4πkn .

I Smallest non-zero field in a factor of 2n bigger.

I Thats bad...

Page 42: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I In the continuum it is possible to construct a manifestly(anti-)symmetric background gauge field,

F12 = ∂1A2 − ∂2A1

A2 = ωx

2,A1 = −ω y

2

I Symmetric under the transformation x → −y .

I It is possible on the lattice as well (if nx = ny = n), bysetting

U1(x , y) = exp(−iωy/2),

U2(x , y) = exp(+iωx/2).

I However, the quantisation condition is now ω = 4πkn .

I Smallest non-zero field in a factor of 2n bigger.

I Thats bad...

Page 43: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

~B Asymmetry

I In the continuum it is possible to construct a manifestly(anti-)symmetric background gauge field,

F12 = ∂1A2 − ∂2A1

A2 = ωx

2,A1 = −ω y

2

I Symmetric under the transformation x → −y .

I It is possible on the lattice as well (if nx = ny = n), bysetting

U1(x , y) = exp(−iωy/2),

U2(x , y) = exp(+iωx/2).

I However, the quantisation condition is now ω = 4πkn .

I Smallest non-zero field in a factor of 2n bigger.

I Thats bad...

Page 44: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(−iωxy),

using

U ′µ(x , y) = G (x , y)Uµ(x , y)G †(x + δµ1, y + δµ2)

we obtainU ′1(x , y) = 1

except on the boundary where

U ′1(nx , y) = exp(−iωnxy)

I For the links in the y direction we get

U ′2(x , y) = exp(+iωx).

I G (x , y) “rotates” the gauge potential 90.

Page 45: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(−iωxy),

using

U ′µ(x , y) = G (x , y)Uµ(x , y)G †(x + δµ1, y + δµ2)

we obtainU ′1(x , y) = 1

except on the boundary where

U ′1(nx , y) = exp(−iωnxy)

I For the links in the y direction we get

U ′2(x , y) = exp(+iωx).

I G (x , y) “rotates” the gauge potential 90.

Page 46: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(−iωxy),

using

U ′µ(x , y) = G (x , y)Uµ(x , y)G †(x + δµ1, y + δµ2)

we obtainU ′1(x , y) = 1

except on the boundary where

U ′1(nx , y) = exp(−iωnxy)

I For the links in the y direction we get

U ′2(x , y) = exp(+iωx).

I G (x , y) “rotates” the gauge potential 90.

Page 47: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(−iωxny ),

we obtain

U1(x , y) = exp(−iω(ny − y))

withU2(x , y) = 1

except for the boundary,

U2(x , ny ) = exp(+iωnyx).

I G (x , y) “reverses” the gauge potential y → (ny − y).

Page 48: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(−iωxny ),

we obtain

U1(x , y) = exp(−iω(ny − y))

withU2(x , y) = 1

except for the boundary,

U2(x , ny ) = exp(+iωnyx).

I G (x , y) “reverses” the gauge potential y → (ny − y).

Page 49: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(+iωnxy),

this reverses the “rotated” potential, x → (ny − x).

I We then average the wave function over all four gaugepotentials to obtain symmetrised results (in the x–yplane).

I All four gauge potentials produce the same fieldstrength tensor.

Page 50: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(+iωnxy),

this reverses the “rotated” potential, x → (ny − x).

I We then average the wave function over all four gaugepotentials to obtain symmetrised results (in the x–yplane).

I All four gauge potentials produce the same fieldstrength tensor.

Page 51: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Gauge Transformation

I If we apply the gauge transformation

G (x , y) = exp(+iωnxy),

this reverses the “rotated” potential, x → (ny − x).

I We then average the wave function over all four gaugepotentials to obtain symmetrised results (in the x–yplane).

I All four gauge potentials produce the same fieldstrength tensor.

Page 52: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge, B Field

I See animation.

I “Peanut” shape.

I Diquark clustering still present.

I Background field only induces a slight deformation.

Page 53: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge, B Field

I See animation.

I “Peanut” shape.

I Diquark clustering still present.

I Background field only induces a slight deformation.

Page 54: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge, B Field

I See animation.

I “Peanut” shape.

I Diquark clustering still present.

I Background field only induces a slight deformation.

Page 55: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Landau gauge, B Field

I See animation.

I “Peanut” shape.

I Diquark clustering still present.

I Background field only induces a slight deformation.

Page 56: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background Field

I B = 0, x–z plane, d = 0.

Page 57: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background Field

I B = 1, x–z plane, d = 0.

Page 58: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background Field

I B = 0, x–z plane, d = 5.

Page 59: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Background Field

I B = 1, x–z plane, d = 5.

Page 60: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge, B Field

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering still absent.

I Background field only induces a slight deformation.

Page 61: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge, B Field

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering still absent.

I Background field only induces a slight deformation.

Page 62: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge, B Field

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering still absent.

I Background field only induces a slight deformation.

Page 63: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Coulomb gauge, B Field

I See animation.

I “Ellipsoidal” shape.

I Diquark clustering still absent.

I Background field only induces a slight deformation.

Page 64: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Summary

I Wave function of the proton is gauge dependent.

I Diquark clustering present in Landau gauge.

I Diquark clustering absent in Coulomb gauge.

I Strong background field (µB ≈ 260 MeV) induces arelatively small deformation,

I Multiple symmetrisation techniques employed.

I Happy Birthday Tony!

Page 65: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Summary

I Wave function of the proton is gauge dependent.

I Diquark clustering present in Landau gauge.

I Diquark clustering absent in Coulomb gauge.

I Strong background field (µB ≈ 260 MeV) induces arelatively small deformation,

I Multiple symmetrisation techniques employed.

I Happy Birthday Tony!

Page 66: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Summary

I Wave function of the proton is gauge dependent.

I Diquark clustering present in Landau gauge.

I Diquark clustering absent in Coulomb gauge.

I Strong background field (µB ≈ 260 MeV) induces arelatively small deformation,

I Multiple symmetrisation techniques employed.

I Happy Birthday Tony!

Page 67: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Summary

I Wave function of the proton is gauge dependent.

I Diquark clustering present in Landau gauge.

I Diquark clustering absent in Coulomb gauge.

I Strong background field (µB ≈ 260 MeV) induces arelatively small deformation,

I Multiple symmetrisation techniques employed.

I Happy Birthday Tony!

Page 68: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Summary

I Wave function of the proton is gauge dependent.

I Diquark clustering present in Landau gauge.

I Diquark clustering absent in Coulomb gauge.

I Strong background field (µB ≈ 260 MeV) induces arelatively small deformation,

I Multiple symmetrisation techniques employed.

I Happy Birthday Tony!

Page 69: Wave function of the Proton

Wave function ofthe Proton

Dale Roberts,Waseem Kamleh,Derek Leinweber

Introduction

Interpolating Field

u Symmetrisation

Landau Gauge

Coulomb Gauge

~B Field~B Symmetrisation

Landau Gauge

Coulomb Gauge

Summary

Summary

I Wave function of the proton is gauge dependent.

I Diquark clustering present in Landau gauge.

I Diquark clustering absent in Coulomb gauge.

I Strong background field (µB ≈ 260 MeV) induces arelatively small deformation,

I Multiple symmetrisation techniques employed.

I Happy Birthday Tony!